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A B S T R A C T

A data assimilation framework, utilising measurements of pore water pressure to sequentially improve the es-
timation of soil hydraulic parameters and, in turn, the prediction of slope stability, is proposed. Its effectiveness
is demonstrated for an idealised numerical example involving the spatial variability of saturated hydraulic
conductivity, . It is shown that the estimation of generally improves with more measurement points. The degree
of spatial correlation of influences the improvement in the predicted performance, as does the selection of initial
input statistics. However, the results are robust with respect to moderate uncertainty in the spatial and point
statistics.

1. Introduction

The slope stability of an embankment subjected to cyclic water level
fluctuation is crucial in geotechnical engineering [13,20,22], with the
distribution of pore water pressure (PWP) under seepage being parti-
cularly relevant in any slope stability assessment [2,28]. To accurately
estimate the PWP, a precise determination of the soil hydraulic para-
meters is required. However, because it is not realistic to conduct in-situ
testing everywhere, some uncertainty remains due to the spatial
variability of material properties between measurement locations. This
causes difficulty in accurately predicting the seepage behaviour and
distribution of pore pressures, and, thereby, the embankment stability.

Data assimilation, which can utilise field measurements, is one
method of improving the prediction of slope behaviour, because it can
improve the estimation of soil parameters. Data assimilation is defined
here as any method to include measured data into numerical analyses.
Often, a type of data assimilation known as back-analysis is used, where
parameters for the analysis are estimated using measured data available
at a certain time (normally the end of the period under consideration).
Most previous studies related to slope back-analysis have focused on
soil shear strength parameters [8,15,25], in which the utilised mea-
surements were mainly displacement or stress/strain. PWP measure-
ments are seldom used in geotechnical engineering, although, in hy-
drology, it has already been proven that such measurements improve
the estimation of hydraulic parameters [27]. In geotechnical en-
gineering, the improved accuracy of hydraulic parameters not only
benefits the estimation of PWP but also the prediction of slope stability
[24].

A limited number of studies have investigated the influence of im-
proved estimation of hydraulic parameters on slope stability, although
they have usually ignored the spatial variability of parameter values.
For example, Zhang et al. [26] applied the Bayesian method to back-
calculate hydraulic parameters by utilising PWP measurements and
investigated the effect of uncertainty in the parameters on the predic-
tion of slope stability, but without incorporating spatial variability. In
contrast, Vardon et al. [24] linked the ensemble Kalman filter (EnKF)
[4,5] with the random finite element method (RFEM) [9] in steady state
seepage to back-calculate the hydraulic conductivity based on PWP
measurements. They cross-correlated hydraulic conductivity with the
strength parameters (cohesion and friction angle) and investigated the
influence of the improved estimation of hydraulic conductivity on the
distribution of the factor of safety (FOS). Meanwhile, Jafarpour and
Tarrahi [14] indicated that an imprecise knowledge of the spatial
continuity could induce erroneous estimations of soil property values,
whereas Pasetto et al. [19] investigated the influence of sensor failure
on the estimation of ksat , focusing on two cases with different correla-
tion lengths. The results demonstrated that the identification of ksat was
more accurate for the larger correlation length. Hommels et al. [12]
compared the EnKF with the Bayesian method and concluded that the
EnKF, essentially a step-wise Bayesian method, was easier to imple-
ment, as it does not require the assimilation of all available data and
could sequentially improve the estimation of parameters once further
data become available.

In this paper, the authors account for the spatial variability of ksat,
which plays a dominant role in rainfall infiltration as pointed out by
Rahardjo et al. [21]. In addition, the EnKF is applied to improve the
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estimation of the ksat field by using (in this instance, numerically gen-
erated) ‘measurements’ of PWP. Due to the existence of spatial varia-
bility, the spatial correlation length and arrangement and number of
measurement points can have an influence on the data assimilation.
Therefore, these aspects are also investigated.

The paper is organised as follows. Firstly, the formulations of sto-
chastic transient seepage, the EnKF and slope stability are introduced.
Then, a synthetic example is analysed, to demonstrate the sequential
reduction of the uncertainty in ksat and the influence on the subsequent
prediction of slope stability. Finally, an investigation into the influence
of the pointwise statistics and spatial continuity of ksat on the data as-
similation process via the EnKF, utilising synthetic data, has been un-
dertaken.

2. Formulation

2.1. Framework of the overall analysis

Vardon et al. [24] utilised hydraulic measurements in steady-state
seepage to reduce slope stability uncertainty via the EnKF. The for-
mulation of the numerical approach was also given. This paper extends
the research to transient seepage, as illustrated by the framework
shown in Fig. 1.

With reference to Fig. 1(a), the analysis starts by generating an in-
itial ensemble of realisations of the spatial variation of ksat, based on the
probability distribution and scales of fluctuation of ksat (i.e. multiple
random field realisations of ksat are generated). The initial ensemble of
ksat is imported into a stochastic transient seepage process. When the
time t reaches t1, the measurements that have been acquired from the
field can be used in the data assimilation process; that is, the EnKF is
applied to improve the estimation of ksat for all realisations in the en-
semble, based on the measured data. The slope reliability can also be
calculated, although, as it is the first time the EnKF is used in the
transient seepage process, there is no immediate improvement in the
estimated pore pressure. The two options are represented by calculation
boxes A and B in Fig. 1(b) and (c), respectively. The analysis then
continues until the time reaches t2, whereupon the computation of pore
water pressure resulting from the improved estimation of ksat (calcu-
lated at t1) can be used to compute the slope reliability. At the same time
the EnKF can again be applied to get an updated estimation of ksat , since
new PWP measurement data have been acquired. As the analysis pro-
ceeds still further, the data assimilation continues to t3, t4 and so on,

with calculation box A or B being followed at each stage.

2.2. Slope stability assessment under transient seepage

The governing equation of 2D transient unsaturated–saturated flow
is based on mass conservation, as described in Liu et al. [16,17]. To
solve it, both the soil water retention curve (SWRC), which describes
the relationship between the suction head, hs, and the volumetric water
content, θ, and the saturated–unsaturated hydraulic conductivity re-
lationship are necessary. In Liu et al. [16,17], the Van Genuchten–-
Mualem model [18,23] was used to describe the relationship between
hs and θ, and the impact of hysteresis was examined. Herein, the effect
of hysteresis is not taken into account, in order to simplify the com-
putation. The hydraulic conductivity of an unsaturated soil can also be
derived using the Van Genuchten [23] model. Fig. 2(a) and (b) shows
the volumetric water content and hydraulic conductivity of the un-
saturated soil, respectively, as functions of the suction head.

As in Liu et al. [16,17], Bishop’s effective stress, incorporating the
influence of both suction and water content, has been combined with
the extended Mohr–Coulomb failure criterion to calculate the shear
strength.

2.3. Soil parameter random fields

The spatial variability of soil parameters is simulated by the gen-
eration of random fields, which are based mainly on the statistical
distributions and spatial correlations of the parameters. The distribu-
tion of a soil parameter is often assumed to be normal or log-normal,
and characterised by the mean and standard deviation. In this paper,
the distribution of ksat is considered to be log-normal [9,28], so that the
natural log of ksat, kln sat, follows a normal distribution. The spatial
correlation of soil parameters is here characterised by the scale of
fluctuation (SOF), l, which is the distance over which parameters are
significantly correlated, and the exponential correlation function. A
more detailed description of the SOF and exponential correlation
function are given in Fenton and Griffiths [6].

In this paper, the random fields have been generated using local
average subdivision (LAS) [7], using the computer module im-
plemented by Hicks and Samy [10,11]. After the random fields of soil
parameters (in this case ksat) have been generated, the values are im-
ported into the finite element program at the Gauss point level and then
used in computing the seepage and/or slope stability behaviour. The

Nomenclature

′c effective cohesion
e superscript indicating ensemble mean
E stiffness
FOS factor of safety
Gs specific gravity of the soil particles
hs suction head
hs ae, air-entry suction head
i Gauss point number
ksat saturated hydraulic conductivity
l scale of fluctuation
lh scale of fluctuation in the horizontal direction
lv scale of fluctuation in the vertical direction

kln sat natural log of ksat
n fitting parameter of the soil water retention curve
N total number of ensemble members
Nk number of unknown ksat values
nn number of element nodes
PWP pore water pressure
r superscript indicating ‘real’ values

RMSE root mean square error
SOF scale of fluctuation
SPREAD measure of uncertainty between the ensemble members
SWRC soil water retention curve
t time
T1 period of the first sinusoid
T2 period of the second sinusoid

iVAR( ) ensemble variance for each kln sat
WL water level
x coordinate in the horizontal direction
z coordinate in the vertical direction
αd approximately the inverse of the air-entry suction head for

soil water retention curve
θ volumetric water content
θs saturated volumetric water content
θr residual volumetric water content
μ mean
σ standard deviation
υ Poisson’s ratio
ψ Dilation angle

′φ effective friction angle
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Fig. 1. Framework of the numerical approach
incorporating transient seepage: (a) Overall flow
chart; (b) details of calculation box A; (c) details
of calculation box B.
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combined use of random fields and the finite element method (FEM) is
often referred to as the random finite element method (RFEM).

2.4. Ensemble Kalman filter (EnKF)

The ensemble Kalman filter, developed by Evensen [4,5], has been
linked with RFEM using the implementation described in Vardon et al.
[24]. To avoid repetition an extensive description is not included in this
paper, although the following brief summary of the method is included.

During the EnKF step, the possible solution space is explored,
guided by the difference between the measurements and simulated
values (in this case pore pressure) at the same location (including a
random value added to each point to allow for measurement errors),
and the Kalman gain is calculated in order to minimise the posterior
error. This can be considered a Bayesian step. The Kalman gain in-
corporates the covariance between the measurements (pore pressure)
and parameter values (hydraulic conductivity). The comparison be-
tween the measurements and simulated values of pore pressure is only
made at the current step, whereas a full Bayesian approach would seek
to include all data.

The difference between this paper and Vardon et al. [24] is that,
here, the measurement of PWP is from a transient seepage process, so
that the analysis is able to capture additional information as time
progresses. Theoretically, the EnKF can be applied at any time that
measurements are acquired. However, because it requires a lot of
computational effort, the authors have applied the EnKF at selected
practical time steps during the transient seepage process.

3. Illustrative analysis

An idealised embankment subjected to cyclic water level fluctuation
has been taken as an example to demonstrate the behaviour of the
proposed approach; that is, in sequentially improving the estimation of
ksat by using PWP measurements and thereby the influence of the up-
dated hydraulic parameters on the prediction of slope stability.

The geometry of the embankment is shown in Fig. 3. Its height is
12m, and the width of the crest and base are 4m and 52m, respec-
tively. The embankment experiences a water level fluctuation on the
upstream side, with WL1 and WL2 being the highest and lowest water
levels. The downstream water level remains at foundation level
(z = 0m). The bottom boundary is impermeable and fixed.

The water level fluctuation has been simulated by the summation of
two sinusoidal curves (Fig. 4). T1 = 1000 days is the time period of si-
nusoidal 1 (component 1 in Fig. 4) and T2 is the time period of sinu-
soidal 2 (component 2 in Fig. 4), in which =T T31 2. The small arrows in
the figure indicate the times at which the pore water measurement data
were acquired and the EnKF applied, while the numbers along the top
of the figure indicate which application of the EnKF the arrows refer to.
The slope stability analyses have been done directly before the 2nd, 4th,
6th, 8th, 10th and 12th data assimilation steps. The random error used

Fig. 2. The relationships between suction head and (a) volumetric water content and (b) hydraulic conductivity.
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Fig. 3. Geometry of the embankment.
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Fig. 4. Water level fluctuation simulated by two sinusoidal curves.

Table 1
Parameter values for the illustrative example.

Parameter Symbol Unit Value

VGM parameter for the curve αd m−1 0.1
Fitting parameter for VGM model n – 1.226
Saturated volumetric water content θs – 0.38
Residual volumetric water content θr – 0.0038
Stiffness E kPa 1.0× 105

Poisson's ratio υ – 0.3
Effective cohesion ′c kPa 15
Effective friction angle ′φ ° 20
Dilation angle ψ ° 0
Specific unit weight Gs – 2.02

Note: VGM denotes the Van Genuchten-Mualem model.
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in the EnKF, representing the measurement uncertainty (see Vardon
et al. [24] for details), was taken from a normal distribution with a
mean of zero and a standard deviation of 0.001m.

In the embankment, the heterogeneity of ksat has been characterised
by its probability distribution, i.e. as characterised by the mean, μ, and
standard deviation, σ , of ksat, and by the SOF, l. The mean and coeffi-
cient of variation of ksat are assumed to be 1.0× 10−8 m/s and 1.0,
respectively, whereas the vertical and horizontal SOFs of ksat are as-
sumed to be lv = 1.0m and lh = 8.0m, respectively. The mechanical
parameters and other hydraulic parameters are assumed to be de-
terministic and are listed in Table 1. These values are typical for organic
soils.

LAS has been used to generate 1000 random fields as initial en-
semble members. It has also been used to generate a single reference

0 1 2 3 4 5 6 7 8 9 2111011-2-3-4-5--7 -6-12 -11 -10 -9 -8

(a)

(b)

Fig. 5. (a) finite element mesh and (b) locations of possible measurement
points.

Table 2
Scenarios of different numbers of measurement points.

Scenario Columns selected Number of measurement points

1 ± 12,± 10,± 8,± 6,±4,± 2, 0 155
2 ±12,± 9,± 6,±3, 0 103
3 ±10,± 5, 0 63
4 ±7, 0 45
5 ±12, 0 25
6 Points in± 10,±5, 0 (‘–’) 8
7 Points in± 5, 0 (‘/’) 3

Note: ± indicates both positive and negative column numbers; the symbols ‘–’ and ‘/’
indicate the positions of the points in scenarios 6 and 7, respectively.

(c)

(b)

(d)

-4.92
lnksat

-6

-8

-10.5

(a)
Fig. 6. Improved estimation of lnksat field (lv = 1m and lh = 8m): (a)
Reference field; (b) initial estimation before assimilation; (c) improved
estimation after 1st assimilation step; (d) improved estimation after 11th
assimilation step.

K. Liu et al. Computers and Geotechnics 95 (2018) 147–161

151



realisation, based on the same statistics as used for the ensemble. This is
to represent ‘real’ values of hydraulic conductivity (as might be ob-
tained from the field) and has been used in the seepage analysis to
produce ‘real’ data of PWP to be assimilated.

Two indicators are used to evaluate the performance of the EnKF:

∑= −
=N

k kRMSE 1 ((ln ) (ln ) )
k i

N
sat
i r

sat
i e

1
2k

(1)

∑=
=N

iSPREAD 1 VAR( )
k i

N

1
k

(2)

where RMSE is the root mean square error and SPREAD is a measure of
the uncertainty of the ensemble members, and in which i is the Gauss
point number, Nk is the number of unknown ksat values in the em-
bankment, superscripts r and e indicate the ‘real’ and ensemble mean
values, respectively, and iVAR( ) is the ensemble variance for each
unknown ksat, computed over all ensemble members.

4. Results

4.1. Example analysis

This section demonstrates the capability of the EnKF in sequentially
improving the estimation of the spatially varying ksat, as well as the
subsequent prediction of slope stability.

4.1.1. Estimation of ksat via the EnKF
The number of measurement points used in the EnKF is 63, and the

locations are shown in Fig. 5 and Table 2. Fig. 6 shows the comparison
between the reference kln sat field, and the initial and improved esti-
mations of the same field. It is seen that, after data assimilation, the
estimated local variability of ksat is significantly improved.

Fig. 7 shows the reduction of the RMSE and ensemble spread of ksat.
Whereas the RMSE decreases quickly in the first few assimilation steps

and becomes stable thereafter, the SPREAD decreases continuously.
Based on Eq. (1), the decrease in RMSE indicates that the estimation of
ksat, i.e. the ensemble mean of ksat , becomes closer to the ‘real’ value.
Based on Eq. (2), the decrease in SPREAD indicates that the variability
of ksat at each Gauss point becomes smaller. This implies that the system
is more certain that this is the best result it can calculate with the
measurements and solution space available. The value to which the
RMSE converges depends on the parameter values in the system which
affect the result at the measurement locations. If there are parameter
values which do not affect the measurements, the covariance of the
measurements and parameters used in the Kalman gain is negligible,
and therefore they are not adjusted. Moreover, a random error re-
presenting the measurement error is added to each measurement in
each assimilation step, and the level of this noise also affects the RMSE
value.

Fig. 8 compares, for each Gauss point in the finite element mesh, the
ensemble mean of kln sat with the reference kln sat . The straight diagonal
line in the figure indicates a perfect match between the two quantities.
Therefore, the closer to the line a circle (representing a Gauss point
value) is, the closer the ensemble mean ksat of this point is to the re-
ference ksat . The colour of the circle represents the numbering of the
Gauss points, i.e. from 1 to 2784. In addition, the size of the circle
indicates the ratio of the horizontal to vertical coordinates of the points,
i.e. x z/ . Fig. 8 shows the ensemble means of kln sat getting closer to the
reference kln sat as the number of assimilation steps increases.

4.1.2. Prediction of slope stability
The improved estimation of ksat results in an improvement in the

estimation of PWP. This influences the effective stress, which, in turn,
influences the prediction of slope stability. Fig. 9 shows the distribu-
tions of FOS with and without data assimilation, i.e. the probability
density function (PDF) and cumulative distribution function (CDF) at
different times, as well as the corresponding improved kln sat random
fields. The solid vertical line represents the ‘real’ FOS calculated using
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Fig. 7. RMSE and SPREAD of ksat as a function of the data
assimilation step.
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the PWP derived from the reference ksat field. It is seen that the pre-
diction of slope stability can be improved via data assimilation using
PWP measurements, due to the standard deviation of the FOS de-
creasing compared to the original distribution. This is mainly due to the
decreased ensemble spread of ksat (Fig. 7), which reduces the un-
certainty in the estimation of PWP and, in turn, the uncertainty in the
slope stability. It is seen that the updated results yield a mean which
consistently overpredicts the FOS, although the FOS is part of the PDF
predicted at all times. This is thought to be due, at least in part, to the
selected measurement data and the log-normal distribution of the hy-
draulic conductivity.

Note that Fig. 9(e) shows the mean of the predicted FOS just before
the 10th assimilation step to be less accurate than just before the 8th
assimilation step (Fig. 9(d)). This is because the error between the ‘real’
PWP and computed PWP increases. The error is defined as:
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where nn is the number of element nodes, N is the number of ensemble
members, and PWPe and PWPr are the computed PWP and ‘real’ PWP
based on the reference hydraulic conductivity field, respectively.
Fig. 10 shows the variation of Error (in terms of PWP head) with time. It
is seen that the Error increases at =t T5 2, causing the mean of the FOS
in Fig. 9(e) to move to the right relative to the ‘real’ solution and the
standard deviation of the FOS to increase. The Error increase is due to
the increased uncertainty in the PWP, which is due to the transient
drying–wetting seepage process. The uncertainty in the PWP changes
with time, partly due to the non-linearity of the SWRC and partly be-
cause some soils are still drying while others may be wetting.
Fig. 9(f), (l) and (r) are the results at =t T2 1, revealing that the mean of
the predicted FOS starts getting closer to the reference FOS again.

To further illustrate this, the computation of the seepage process
and slope stability have been extended to T8 2. Fig. 11(a) shows the
variation of the computed mean FOS and reference FOS with time, and
Fig. 11(b) shows the variation of the standard deviation of FOS with
time, with and without data assimilation. As expected, the standard
deviation is significantly smaller when incorporating data assimilation,
although it fluctuates with time as the process continues (due to the
fluctuating external loading).

4.2. Sensitivity to the number of measurement points

4.2.1. Estimation of ksat

The estimation of the spatial variability of ksat requires PWP sensors
to be installed to capture the local variability. In this section, the in-
fluence of different numbers of measurement points on the estimation
of ksat is investigated. These points are assumed to be located at selected
finite element nodes, as shown in Fig. 5(b), in which the numbers

indicated below the embankment are the allocated serial numbers of
the columns of measurement points. In order to investigate the influ-
ence of the number of measurement points, different numbers of
measurement points were used by selecting different combinations of
columns. The details are given in Table 2.

The input mean and standard deviation of ksat are the same as in the
previous section, as are lv and lh. Fig. 12 shows the influence of the
number of measurement points on the estimation of ksat. It is seen that
the RMSE and SPREAD decrease with increasing number of measure-
ment points, albeit with less of an impact on the RMSE above 63 points.

4.2.2. Estimation of slope stability
The influence of the number of measurement points on the predic-

tion of slope stability is shown in Fig. 13. It can be seen that, counter-
intuitively, the uncertainty in the FOS for 63 measurement points is
slightly less than that for 103 measurement points. This is because the
uncertainty in the FOS is also influenced by the measurement locations.
To illustrate this, Fig. 14 shows a comparison between two different
configurations of 63 measurement points: the original configuration
defined in Table 2, and a second in which the 63 points are located in
Columns 0,± 3 and±12. The uncertainty in the FOS for the second
configuration is greater due to the different spatial distribution of
measurements throughout the embankment.

4.3. Influence of spatial continuity on the data assimilation

The spatial continuity has been proven to be influential on the es-
timation of ksat when the EnKF is applied in the data assimilation pro-
cess [1,14,19]. When the SOF is large, the local ksat is more likely to be
correlated over a relatively long distance. Therefore, it is hypothesised
that, for the same number of measurement points, when the SOF (l) is
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larger, the assimilated results should give a better estimation of ksat.
This has been investigated for both isotropic and anisotropic random
fields.

4.3.1. Isotropic fields
For isotropic random fields, lv is equal to lh. Three different values

have been studied here, i.e. lv = lh = 2, 8, 64m, as illustrated by ty-
pical random fields shown in Figs. 15(a), 16(a) and 17(a), respectively.
It is seen that, with an increase in the SOF, the domain becomes nearer
to a homogeneous field.

Fig. 18 shows that the RMSE and SPREAD for the three SOFs

decrease with an increase in the number of assimilation steps. More-
over, when the SOF is larger, the RMSE is smaller which indicates that
the updated estimation of ksat is more accurate. The SPREAD is also less
for a larger SOF. Figs. 15–17 compare the reference and updated kln sat
fields for different values of l.

Fig. 19 shows that the original standard deviation of the FOS in-
creases with an increase in SOF. When the EnKF is applied, by com-
paring the original and updated standard deviations, it is seen that the
reduction of the standard deviation of the FOS is greatest for the largest
SOF.
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Fig. 15. Improved estimation of lnksat field (lv = lh = 2m): (a) Reference
field; (b) improved estimation after 11th assimilation step based on 63
measurement points.
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Fig. 16. Improved estimation of lnksat field (lv = lh = 8m): (a) Reference
field; (b) improved estimation after 11th assimilation step based on 63
measurement points.
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Fig. 17. Improved estimation of lnksat field (lv = lh = 64m): (a) Reference
field; (b) improved estimation after 11th assimilation step based on 63
measurement points.
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4.3.2. Anisotropic fields
In practice, due to the depositional process of soil, the horizontal

SOF tends to be larger than the vertical SOF. In this section, the vertical
SOF is assumed to be constant, i.e. =l 1v m, and the horizontal SOF is
lh = 2, 8, 64m. The larger lh leads to horizontal passages of lower re-
sistance to water flow. Figs. 6(a), 20(a) and 21(a) show typical random
fields for the three horizontal SOFs.

In Fig. 22, the number of measurement points is 63, except for

lh = 2m when two different numbers of measurement points are
compared, i.e. 63 and 103. It was found that, when lh = 2m, the RMSE
does not decrease monotonically when 63 measurement points are
used. Since the horizontal SOF is small, indicating that the soil property
values are correlated over a small distance, more measurement points
have also been considered for this case. Fig. 22 shows that the RMSE
decreases when 103 measurement points are used. For lh = 8m and
64m, the RMSE decreases with increasing number of assimilation steps.
The SPREAD decreases with the number of assimilation steps and the
extent of the reduction increases with an increase in lh (and with an
increase in the number of measurement points).

Figs. 20 and 21 compare the reference and updated kln sat fields for
lh = 2m and 64m, respectively. The case with lh = 8m is shown in
Fig. 6.

In Fig. 23, when the EnKF is not applied, there is no significant
difference in the standard deviations of the FOS. However, when the
EnKF is applied, it is seen that the reduction in the standard deviation of
the FOS is significant and is highest for lh = 8m. This indicates that the
reduction of the uncertainty does not simply increase with an increase
in the horizontal SOF.

4.4. Influence of initial ensemble statistics

So far, the generated ensembles have been based on the same spatial
statistics as used to generate the ‘real’ field. This section investigates the
impact (on the analysis) of generating ensembles from inaccurate input
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Fig. 18. Variation of RMSE and SPREAD with SOF for iso-
tropic random fields.
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on 63 measurement points; (c) improved estimation after 11th assimilation
step based on 103 measurement points.
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statistics.

4.4.1. Influence of inaccurate SOF
In the previous analyses, the SOF of ksat was used to generate the

initial ensemble members via LAS. Chen and Zhang [1] briefly analysed
the influence of an inaccurate integral scale (similar to the SOF) and
found that a small deviation (i.e. of 20%) in its value had no significant
impact on the assimilation results. However, they also pointed out that
wrong information on the statistical anisotropy could have a long-
lasting effect on the updated kln sat field and that the effect is difficult to
eliminate. Therefore, this section analyses a few cases in which lh is
assumed to deviate from the ‘real’ value, i.e. 50% smaller, 50% larger
and 100% larger. In addition, a limiting case where the SOF is assumed
to be infinity has been analysed, so that the generated initial ensemble
members are based only on the probability distribution of ksat , i.e. on
the mean and standard deviation.

Fig. 24 shows the comparison of the RMSE and SPREAD between
the cases, whereas Fig. 25 shows the reference and updated kln sat fields
corresponding to the 11th assimilation step, which can be compared
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lnksat Fig. 21. Improved estimation of lnksat field (lv = 1m and lh = 64m): (a)
Reference field; (b) improved estimation after 11th assimilation step based
on 63 measurement points.
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with the updated field based on the correct SOF of lh = 8m in Fig. 6(d).
Fig. 25(b) shows that no spatial variability is modelled in the updated

kln sat field when the starting SOF is infinity. Moreover, Fig. 24 shows
that the SPREAD with no spatial variability decreases to zero, which
implies that the updated estimation of ksat does indeed converge to a
single value. Therefore, it can be concluded that the EnKF cannot de-
termine the local variability of ksat without the input of spatial varia-
bility in the ensemble members. This can be explained by the calcula-
tion of the Kalman gain [24]. If no spatial correlation is initially
considered, i.e. the field is homogeneous, in each state vector the cor-
responding values of hydraulic conductivity will be the same (because
ksat is the same throughout the mesh). Then the Kalman gain gives a
uniform change in the update of ksat, since there is only a single prop-
erty value in each ensemble member. Therefore, the Kalman gain re-
sults in the same updates for all local ksat for each ensemble member, so
that the algorithm is not able to search for local variability of ksat in the
reference field.

Significantly, Fig. 25(c)–(e) indicates that, when the input hor-
izontal SOF deviates by −50%, +50% and +100% from that of the
reference field, the updated estimation of ksat is still acceptable and is
almost identical to that obtained when an accurate horizontal SOF is
used (Fig. 6(d)).

4.4.2. Influence of inaccurate mean and standard deviation
The influence of the initial mean and standard deviation of ksat has

also been investigated, as the initial bias has an influence on the up-
dated estimation of ksat [3]. First, only the value of the mean was
changed. Then, the values of both the mean and standard deviation
were changed. Table 3 lists the inaccurate values used in the data as-
similation process. In both cases, accurate SOFs were used.

Figs. 26 and 27 compare results between using accurate and in-
accurate initial conditions. It is seen that, if only the mean value is
inaccurate, there is a big error in the updated estimation of ksat (see
Fig. 27(b)). This may be explained by Fig. 28, which shows the three
input distributions of ksat with different means and standard deviations.
It is seen that, when the mean is inaccurate and the standard deviation
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Fig. 25. Improved estimation of lnksat field based on 63 measurement
points and various estimates for lh relative to lh = 8m: (a) Reference field;
(b) improved estimation (no SOF); (c) improved estimation (lh −50%); (d)
improved estimation (lh +50%); (e) improved estimation (lh +100%).

Table 3
Inaccurate mean and standard deviation of ksat used in the EnKF.

Case Mean (m/s) Standard deviation (m/s) lv (m) lh (m)

Accurate 1.0×10−8 1.0× 10−8 1 8
Inaccurate 1 5.0×10−8 1.0× 10−8 1 8
Inaccurate 2 5.0×10−8 5.0× 10−8 1 8
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is relatively small, there is almost no overlap between the area under
the solid line (representing the correct distribution) and the dash–-
dotted line (representing the inaccurate distribution). The results in-
dicate that, when the initial mean is uncertain, it is better to choose a
larger standard deviation in order to get acceptable back-calculated
results. This is because, if the initial estimation of the mean and stan-
dard deviation is inaccurate, choosing a larger standard deviation for

generating the initial ensemble enables the realisations to cover a larger
range of values, which, in turn, helps in searching out the correct values
of ksat during the data assimilation process. Note that, in Fig. 28, the
distribution curve of ksat based on accurate statistics almost overlaps
with the distribution curves of ksat taken from the reference field
(Fig. 27(a)) and the estimated field (Fig. 27(c)).

5. Comparison between static and temporal measurements

This section considers the difference between using static mea-
surements from steady-state seepage and temporal measurements from
a transient seepage process. For the static measurements, the water
level is assumed to be constant at WL1 and the PWP measurements are
used to iteratively update the estimation of ksat.

Fig. 29 shows the variation of RMSE and SPREAD for the cases using
temporal and static PWP measurements, while Fig. 30 shows the up-
dated estimation of the kln sat field for the two cases. The two figures
demonstrate the improvement is better when using temporal mea-
surements, due to more information being available for tuning the re-
sults.
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Fig. 27. Improved estimation of lnksat field with inaccurate initial condi-
tions: (a) Reference field; (b) improved estimation after 11th assimilation
step with inaccurate mean only; (c) improved estimation after 11th as-
similation step with both inaccurate mean and standard deviation.

Fig. 28. Distributions of ksat for different means and standard deviations.
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6. Conclusions

It has been shown that the measurement of PWP can contribute to
an improved estimation of ksat. In the transient seepage process, once
the measurement of PWP is acquired, the EnKF can be used to improve
the estimation of ksat and, thereby, the estimation of seepage behaviour
and slope stability. Significantly, the temporal analysis gives more in-
formation for tuning results than a steady-state analysis as implemented
in Vardon et al. [24]. It has been found that the precision of the esti-
mation of ksat increases with an increasing number of measurement
points, although the uncertainty reduction in the FOS does not mono-
tonically increase with the increasing number. However, it should be
noted that, whatever the number of measurement points, the un-
certainty in the slope stability can be reduced to a certain extent.

It has also been found that the spatial continuity of ksat, as reflected
by the magnitude of the SOF used in random field simulations, has an
influence on the estimation of ksat and thereby on the estimation of
slope stability. The RMSE of ksat is smaller for a larger l for the same
number of measurement points. In addition, the SPREAD of ksat reduces
as l gets larger. These results indicate that, when the soil parameters are
correlated over a longer distance, the improvement in the estimation of
ksat , when using the EnKF based on the same number of measurement
points, is greater. For slope stability and isotropic spatial variability, the
reduction of the uncertainty in the FOS increases with an increasing l.
However, for anisotropic spatial variability (for lv constant and rela-
tively small compared to the height of the embankment), the reduction

of the uncertainty in the FOS does not simply increase with an in-
creasing degree of anisotropy, i.e. l l/h v, for the analyses presented in
this paper. In addition, although the original standard deviation of the
FOS is almost the same for the three values of lh considered, the updated
standard deviation of the FOS shows significant differences for the
different lh.

Last but not least, the initial ensemble statistics of ksat have been
investigated. It was found that the EnKF cannot work out the local
variability of ksat based only on the measurement data; that is, without
considering the spatial variability in the input ensemble. However, even
a relatively inaccurate estimation of the SOF, as input for the initial
ensemble, can give an updated estimation of ksat that is almost identical
to that obtained using the correct SOF. In addition, when the pointwise
variation of ksat is not captured well, it is better to assume a larger
standard deviation for ksat. This is so that the initial ensemble covers a
greater range of values, which helps when searching the parameter
space during the assimilation process.

The paper has only utilised synthetic data to validate the proposed
framework, so further work is needed to apply this method to a real
project with real measurements.
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