Large-scale efficient extraction of 3D roof segments from aerial stereo imagery

Martijn Vermeer

TU Delft:
Mentor #1: Hugo Ledoux
Mentor #2: Tom Commandeur
Co-reader: Pirouz Nourian

Readaar:
Sven Briels
From: Aerial stereo imagery
To: 3D roof segments

- For large area: Municipalities & Provinces
Relevance: PV potential & Asbestos

READAAR:

- Photovoltaic potential
 - Number of panels and orientation
 - Solar panel yield

- Detection of asbestos
 - Asbestos illegal in 2024
 - Estimated 120km2
 - 1000 asbestos related deaths yearly
Current method READAAR has its limitations

- Based on gridded LiDAR
 - Not always available outside NL
 - Expensive to gather

- Potential improvement using aerial stereo imagery
LiDAR vs stereo

- Color
- Density
- Gaps/noise
LiDAR vs stereo

- Color
- Density
- Gaps/noise
Goal: Large-scale efficient extraction of 3D roof segments using only aerial stereo imagery

1. Scalability & Efficiency:
 – Municipalities/provinces
 – Fully automatic
 – Within reasonable time

2. 3D roof segments:
 – Watertight building models not required

3. Aerial stereo imagery
 – Not dependent on LiDAR data
Related work: Model vs data driven

- **Model-driven** (Fitting primitives from library)
 - Watertight roofs
 - Limited to shapes in library

- **Data-driven** (Segmentation of pointcloud/image)
 - Roofs of any shape
 - Not watertight
Related work: Segmentation

• Directly searching planes
 – RANSAC
 – Hough transform

• Image segmentation based on color/normals
 – Thresholding
 – Region growing
 – Watershed

• Clustering normals
 – K-means
 – Mean-shift
Literature study conclusions

1. Data-driven approach
 - Any shape
 - Watertight building models not required

2. Potentially useful algorithms for large-scale applications
 - Thresholding
 - Watershed
 - Mean-shift

3. Two step segmentation approach (first color than orientation)
 - Exploiting color
 - Dealing with gaps/noise
 - Efficient
Methods:

- All processing steps are per building
- This Ensures scalability
Methods: Clip, rectify & match

Left View Right View Disparity
Method: Conversion to point cloud
Methods: Color segmentation

Left View

Gradient Magnitude

Watershed
Methods: Cluster color segments

Normal x component

Normal y component

Mean-Shift clustering of color segments based on orientation
Methods: Height jumps

Disparity based on plane models

Height Jumps
Methods: Reconstruction

Vectorize & Cut with Footprint

3D roof segments
Quality assessment:

- **True Positive (TP):** >50% overlap
- **False Positive (FP):** <50% overlap
- **False Negative (FN):** Not detected
Quality assessment:

- **Completeness** = \(\frac{|TP|}{|TP|+|FN|} \)

- **Correctness** = \(\frac{|TP|}{|TP|+|FP|} \)

- **Quality** = \(\frac{|TP|}{|TP|+|FP|+|FN|} \)
Results: Terraced
Results: Free-standing
Results: Industry
Results: Segmentation quality

<table>
<thead>
<tr>
<th>Stereo</th>
<th>Comp</th>
<th>Corr</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terraced</td>
<td>92.9</td>
<td>86.4</td>
<td>81.0</td>
</tr>
<tr>
<td></td>
<td>96.7</td>
<td>98.6</td>
<td>95.4</td>
</tr>
<tr>
<td>Free-standing</td>
<td>64.5</td>
<td>76.2</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td>86.1</td>
<td>96.3</td>
<td>83.3</td>
</tr>
<tr>
<td>Industry</td>
<td>88.2</td>
<td>48.9</td>
<td>45.9</td>
</tr>
<tr>
<td></td>
<td>95.7</td>
<td>90.0</td>
<td>86.5</td>
</tr>
</tbody>
</table>
Results: Problems

Overhanging roofs

Shadowing effects
Results: Problems

Dormers

Roof objects (Chimneys)
Results: Computation time

- Without loading times
- Roughly 14400 buildings/hour
- Average municipality in The Netherlands has 25000 buildings

<table>
<thead>
<tr>
<th>Process</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectification</td>
<td>0.069</td>
</tr>
<tr>
<td>Matching</td>
<td>0.027</td>
</tr>
<tr>
<td>Watershed</td>
<td>0.018</td>
</tr>
<tr>
<td>BAG_Filter</td>
<td>0.033</td>
</tr>
<tr>
<td>Plane fitting</td>
<td>0.036</td>
</tr>
<tr>
<td>Height Jumps</td>
<td>0.004</td>
</tr>
<tr>
<td>Clustering</td>
<td>0.039</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>0.031</td>
</tr>
<tr>
<td>Total</td>
<td>0.257</td>
</tr>
</tbody>
</table>
Results: Comparison
Results: Comparison

<table>
<thead>
<tr>
<th>Stereo</th>
<th>Comp</th>
<th>Corr</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terraced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10m²</td>
<td>92.9</td>
<td>86.4</td>
<td>81.0</td>
</tr>
<tr>
<td>>10m²</td>
<td>96.7</td>
<td>98.6</td>
<td>95.4</td>
</tr>
<tr>
<td>Free-standing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10m²</td>
<td>64.5</td>
<td>76.2</td>
<td>53.7</td>
</tr>
<tr>
<td>>10m²</td>
<td>86.1</td>
<td>96.3</td>
<td>83.3</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10m²</td>
<td>88.2</td>
<td>48.9</td>
<td>45.9</td>
</tr>
<tr>
<td>>10m²</td>
<td>95.7</td>
<td>90.0</td>
<td>86.5</td>
</tr>
<tr>
<td>LiDAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terraced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10m²</td>
<td>85.7</td>
<td>88.0</td>
<td>76.8</td>
</tr>
<tr>
<td>>10m²</td>
<td>89.7</td>
<td>97.0</td>
<td>87.2</td>
</tr>
<tr>
<td>Free-standing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10m²</td>
<td>34.3</td>
<td>49.7</td>
<td>25.5</td>
</tr>
<tr>
<td>>10m²</td>
<td>58.2</td>
<td>79.8</td>
<td>50.7</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10m²</td>
<td>74.5</td>
<td>47.5</td>
<td>40.9</td>
</tr>
<tr>
<td>>10m²</td>
<td>80.9</td>
<td>92.7</td>
<td>76.0</td>
</tr>
</tbody>
</table>
Conclusions/contributions

- Integration of stereo matching and roof segment extraction (scalable)
- Efficient method for extraction of 3D roof segments from aerial stereo images only
- Higher quality than the current LiDAR-based method
- Problems with shaded areas, overhanging roofs, roof objects and complicated roof shapes
Future work: Matching with neural network

- Promising results
 - Network trained with traffic situations only
 - Train network with aerial stereo images and disparity from AHN

![SGM](image1.png) ![Neural network (Luo, 2016)](image2.png)
Future work: Integrate LiDAR

- Improve results in shaded areas
Future work: Process building blocks

- Improve results when roofs within block are similar
- Not possible for blocks with varying roof shapes
Future work: Intersect segments
Thank you for your attention