The Fertile City

Raising Food Awareness Through Architecture

Drawing booklet

Jino Fattah
The Fertile City
Raising Food Awareness Through Architecture

Project location

Frederiksplein
Amsterdam
The Fertile City
Raising Food Awareness Through Architecture

Design concept
The Fertile City
Raising Food Awareness Through Architecture

Design concept
Project Data

<table>
<thead>
<tr>
<th>Floor</th>
<th>Maisonettes</th>
<th>m² Woning</th>
<th>m² Groen</th>
<th>Average Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG + 1e verdieping</td>
<td>38</td>
<td>85 m²</td>
<td>22,6 m² (11,3 per verd.)</td>
<td>1 tot 4 per woning</td>
</tr>
<tr>
<td>2e + 3e verdieping</td>
<td>68</td>
<td>77 m²</td>
<td>22,6 m² (11,3 per verd.)</td>
<td>gemiddeld 2,5p/w</td>
</tr>
<tr>
<td>4e verdieping</td>
<td>68</td>
<td>34 m² / 39m²</td>
<td>11,3 m² / 8,6 m²</td>
<td></td>
</tr>
<tr>
<td>5e verdieping</td>
<td>34</td>
<td>75 m²</td>
<td>12,8 m²</td>
<td></td>
</tr>
<tr>
<td>6e verdieping</td>
<td>34</td>
<td>75 m²</td>
<td>12,8 m²</td>
<td></td>
</tr>
<tr>
<td>7e + 8e verdieping</td>
<td>29</td>
<td>117 m²</td>
<td>46 m² (23 per verd.)</td>
<td></td>
</tr>
<tr>
<td>Totaal:</td>
<td>271</td>
<td>19185 m²</td>
<td>5277 m²</td>
<td>678 bewoners</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parking Places</th>
<th>Bergingen</th>
<th>m2 Binnentuin</th>
<th>m2 Kas</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>203 prive</td>
<td>3288</td>
<td>678 x 25m² = 16950m² nodig!</td>
</tr>
<tr>
<td></td>
<td>6x gezamenlijk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Data

A residential building for everyone who wants to get involved in the food production through an active way.

A cultivating community through urban agriculture

Food awareness through:
- Food production
- Education exhibition
- Food-based activities
- Community
- Neighborhood facilities
The Fertile City
Raising Food Awareness Through Architecture
Urban Plan: scale 1:1000
The Fertile City
Raising Food Awareness Through Architecture
The Fertile City
Raising Food Awareness Through Architecture

Scale 1:500
First Floor
The Fertile City
Raising Food Awareness Through Architecture
The Fertile City
Raising Food Awareness Through Architecture
The Fertile City
Raising Food Awareness Through Architecture

Scale 1:500
Fifth & Sixth Floor
The Fertile City
Raising Food Awareness Through Architecture

Scale 1:500
Eighth Floor
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: +1200m Ground floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: First floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: Second floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: Third floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: Fourth floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: Fifth & sixth floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: Eighth floor 1:200
The Fertile City
Raising Food Awareness Through Architecture

North (city&park) & South (Singelgracht) facade 1:500
The Fertile City
Raising Food Awareness Through Architecture

West and east facade 1:500
The Fertile City
Raising Food Awareness Through Architecture

Different types of green

1. Edible garden around the building: vegetable gardens around the building for local residents. According to the community rules belonging to the building people could share and maintain the allotment gardens
2. Wintergardens: each dwelling has its own wintergarden to be able to grow food in all seasons.
3. Balustrades: balustrades as plant buckets to grow food
4. Planters: where there is place to grow food outside for ground floor dwellings
5. The courtyard: communal vegetable gardens for the inhabitants of the apartment block and pupils of the nearby primary school.
The Dwellings
The Fertile City
Raising Food Awareness Through Architecture

Floor plan 1:100
Ground & first floor maisonnette 85 m²
The Fertile City
Raising Food Awareness Through Architecture

Floor plan 1:100
Second & third floor maisonette 77 m²
The Fertile City
Raising Food Awareness Through Architecture

Floor plan 1:100
Fourth floor studio 34 & 39 m²
The Fertile City
Raising Food Awareness Through Architecture

Floor plan 1:100
Fifth & Sixth floor apartment m²
The Fertile City
Raising Food Awareness Through Architecture

Floor plan: Seventh & Eighth floor penthouses 117 m²
Building Technology
The Fertile City
Raising Food Awareness Through Architecture

Building Structure

From first floor and higher:
- CLT-wooden walls 300 mm

Ground floor:
- Lignatur wooden floors 300 mm

Half-sunken basement:
- prefabricated concrete load-bearing walls and beams 300 mm

Kanaalplaat floor 300 mm

From first floor and higher:
- CLT-wooden walls 300 mm
- Lignatur wooden floors 300 mm

Ground floor:
- Kanaalplaat floor - CLT-wooden walls

Half-sunken basement:
- cast in situ concrete floor and walls
- prefabricated concrete load-bearing walls and beams that support the kanaalplaat floor

Staircases with elevator

Prefabricated concrete load-bearing walls and beams 300 mm
Structure: Section & Facade fragment 1:20 (here 1:100)
The Fertile City
Raising Food Awareness Through Architecture

Structure: Section & Facade fragment 1:20 (here 1:100)
Fermacell woningscheidende wand 300 mm
- 2x 12.5mm FERMACELL gipsvezelplaat
- 250 mm steenwol
- 2x 12.5mm FERMACELL gipsvezelplaat

CLT- dragende wand 300 mm

The Fertile City
Raising Food Awareness Through Architecture

Floor plan: fragment 1:50 second floor maisonnette
Loggia beglazing voor plaatsing op een borstwering, type MBR-1A, opgebouwd uit een draaipaneel en schuifdraaipanelen.

- Lignatur houten vloer 360 mm
- viltlaag 16 MM
- Moso bamboo 12 MM
- ophangssysteem voor Moso bambo platen
- epdm ter plaatse van bevestiging
vloerelement naar keuze +/- 20 mm
Fenocell afdekplaat 25 mm
Fenocelgipsvezelplaat 18 mm met buizen vloerverwarming
polysyreen 50 mm
Fenocell honingraat 50 mm
Lignatur houten vloer 380 mm

schuifdeur HR++ dubbele beglazing
gehard en gelaagd glas
voorzien van jaloezie in de spouw
- aarde
- membraan
- fijngrind
- grofgrind
- drainage pijp
- afwatering naar het regenwateropslag
Climate: overview

Underfloor heating
- conservatory and loggia as a climate buffer, they act as an intermediate zone in which the outdoor climate is tempered in a natural way.
- natural air supply
- mechanical ventilation

Green sedum roofs:
- hold rainfall for longer
- hold against energy waste
- positive effect on air quality

Geotherm Energy System (WKO)
- geothermal heating and cooling systems take advantage of the stable temperature underground using a piping system, commonly referred to as a ‘loop’. Water circulates in the loop to exchange heat between the building, the ground source heat pump, and the earth, providing geothermal heating, cooling, and hot water at remarkably high efficiencies.
- Function: heating through underfloor heating, cooling, hot tap water.
- Used energy: electricity
- medium: water

Rainwater harvesting system:
- (1) underground tank collects rainwater drained from the roofs through rainwater downpipe, and rainwater from the courtyard through fluted gutters
- the water flows then to the other tanks (2) with water purification system and a pump, that is connected with the washing machine, bath and toilet. This water will also be used for the irrigation of the plants

Water tanks in the building: 226,000 L x 3 = 678,000 L
(water tanks dimensions: height 2000 mm, radius 6000 mm)

Conclusion: water tanks in the building that collect rain water provide plenty water for the purposes mentioned above.

3,435 m² roof x 800 mm (average rainfall a year in the Netherland) x 0.05 = 137,400 L (tank capacity)

Average water consumption a person a day for shower/bath + toilet + washing machine + plants = 103.28 L
+/- 690 residents x 103.28 = 72,000 Liter water a day for all residents

Rainwater harvesting system:
- hold rainfall for longer
- positive effect on air quality

Greenery in the surrounding and courtyard
- hold rainfall for longer
- positive effect on air quality
The Fertile City
Raising Food Awareness Through Architecture

Climate: energy, heating and ventilation

- conservatory and loggia as a climate buffer, they act as an intermediate zone in which the outdoor climate is tempered in a natural way.
- natural air supply
- mechanical ventilation
- local exhaust (kitchen and bath)

Geotherm Energy System (WKO)
- Geothermal heating and cooling systems take advantage of the stable temperature underground using a piping system, commonly referred to as a "loop." Water circulates in the loop to exchange heat between the building, the ground source heat pump, and the earth, providing geothermal heating, cooling, and hot water at remarkably high efficiencies.
- Function: heating through underfloor heating, cooling, hot tap water.
- Used energy: electricity
- Medium: water
The Fertile City
Raising Food Awareness Through Architecture

Climate: water & green

green sedum roofs:
- hold rainfall for longer
- hold against energy waist
- positive effect on air quality

rainwater harvesting system:
- a pond in the green courtyard with oxygen plants to keep the water bright and clean
- a pump for oxygen supply

rainwater harvesting system:
- (1) underground tank collects rainwater drained from the roofs through rainwater downpipe, and rainwater from the courtyard through fluted gutters
- the water flows then to the other tanks (2) with water purification system and a pump, that is connected with the washing machine, bath and toilet. This water will also be used for the irrigation of the plants

3,435 m² roof x 800 mm (average rainfall a year in the Netherlands) x 0.05 = 137,400 L (tank capacity)

average water consumption a person a day for shower/bath + toilet + washing machine + plants = 103.28 L
+/- 690 residents x 103.28 = 72,000 Liter water a day for all residents

water tanks in the building: 226,000 L x 3 = 678,000 L
(water tanks dimensions: height 2000 mm, radius 6000 mm)

Conclusion: water tanks in the building that collect rain water provide plenty water for the purposes mentioned above.
The Fertile City
Raising Food Awareness Through Architecture

Climate: shafts
Impressions