Searched for: +
(21 - 40 of 148)

Pages

document
Wapenaar, C.P.A. (author), Ridder, Sjoerd de (author)
The propagator matrix “propagates” a full wave field from one depth level to another, accounting for all propagation angles and evanescent waves. The Marchenko focusing function forms the nucleus of data-driven Marchenko redatuming and imaging schemes, accounting for internal multiples. These seemingly different concepts appear to be closely...
journal article 2021
document
Brackenhoff, J.A. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
We create virtual sources and receivers in a 3-D subsurface using the previously derived single-sided homogeneous Green's function representation. We employ Green's functions and focusing functions that are obtained using reflection data at the Earth's surface, a macrovelocity model, and the Marchenko method. The homogeneous Green's function is...
journal article 2021
document
van IJsseldijk, J.E. (author), Wapenaar, C.P.A. (author)
The Marchenko method retrieves the responses to virtual sources in the Earth's subsurface from reflection data at the surface, accounting for all orders of multiple reflections. The method is based on two integral representations for focusing- A nd Green's functions. In discretized form, these integrals are represented by finite summations...
journal article 2021
document
Staring, M. (author), Dukalski, Marcin (author), Belonosov, Mikhail (author), Baardman, Rolf H. (author), Yoo, Jewoo (author), Hegge, Rob F. (author), Borselen, Roald van (author), Wapenaar, C.P.A. (author)
Suppression of surface-related and internal multiples is an outstanding challenge in seismic data processing. The former is particularly difficult in shallow water, whereas the latter is problematic for targets buried under complex, highly scattering overburdens. We have developed a two-step, amplitude- and phase-preserving, inversion-based...
journal article 2021
document
Thorbecke, J.W. (author), Zhang, L. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
The Marchenko multiple elimination (MME) and transmission compensation schemes retrieve primary reflections in the two-way traveltime domain without model information or using adaptive subtraction. Both schemes are derived from projected Marchenko equations and are similar to each other, but they use different time-domain truncation operators...
journal article 2021
document
Kiraz, Mert S. R. (author), Snieder, Roel (author), Wapenaar, C.P.A. (author)
The Gel'fand-Levitan equation, the Gopinath-Sondhi equation, and the Marchenko equation are developed for one-dimensional inverse scattering problems. Recently, a version of the Marchenko equation based on wavefield decomposition has been introduced for focusing waves in multi dimensions. However, wavefield decomposition is a limitation when...
journal article 2021
document
Wapenaar, C.P.A. (author), van IJsseldijk, J.E. (author)
Marchenko imaging is based on integral representations for focusing functions and Green’s functions. In practice, the integrals are replaced by finite summations. This works well for regularly sampled data, but the quality of the results degrades in a case of imperfect sampling. We have developed discrete representations that account for...
journal article 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples. Multiples can corrupt seismic images, producing both false positives, that is by focusing energy at unphysical interfaces, and false negatives, that is by destructively interfering with primaries. Multiple prediction...
journal article 2020
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Treitel, Sven (author)
Acoustic inversion in one-dimension gives impedance as a function of travel time.<br/>Inverting the reflection response is a linear problem. Recursive methods, from top to bottom or vice versa, are known and use a fundamental wave field that is computed from the reflection response. An integral over the solution to the Marchenko equation, on the...
journal article 2020
document
Reinicke Urruticoechea, C. (author), Dukalski, M.S. (author), Wapenaar, C.P.A. (author)
The reflection response of strongly scattering media often contains complicated interferences between primaries and (internal) multiples, which can lead to imaging artifacts unless handled correctly. Internal multiples can be kinematically predicted, for example by the Jakubowicz method or by the inverse scattering series (ISS), as long as...
journal article 2020
document
Minato, S. (author), Wapenaar, C.P.A. (author), Ghose, R. (author)
To quantitatively image fractures with high resolution, we have developed an elastic least-squares migration (LSM) algorithm coupled with linear-slip theory, which accurately addresses seismic wave interaction with thin structures. We derive a linearized waveform inversion using the Born approximation to the boundary integral equation for...
journal article 2020
document
Staring, M. (author), Wapenaar, C.P.A. (author)
In recent years, a variety of Marchenko methods for the attenuation of internal multiples has been developed. These methods have been extensively tested on two-dimensional synthetic data and applied to two-dimensional field data, but only little is known about their behaviour on three-dimensional synthetic data and three-dimensional field...
journal article 2020
document
Wapenaar, C.P.A. (author)
With the Marchenko method, it is possible to retrieve the wave field inside a medium from its reflection response at the surface. To date, this method has predominantly been applied to naturally occurring materials. This study extends the Marchenko method for applications in layered metamaterials with, in the low-frequency limit, effective...
journal article 2020
document
Wapenaar, C.P.A. (author)
We consider wave propagation problems in which there is a preferred direction of propagation. To account for propagation in preferred directions, the wave equation is decomposed into a set of coupled equations for waves that propagate in opposite directions along the preferred axis. This decomposition is not unique. We discuss flux-normalised...
journal article 2020
document
Wapenaar, C.P.A. (author)
With the Marchenko method, Green’s functions in the subsurface can be retrieved from seismic reflection data at the surface. State-of-the-art Marchenko methods work well for propagating waves but break down for evanescent waves. This paper discusses a first step towards extending the Marchenko method for evanescent waves and analyses its...
journal article 2020
document
Wapenaar, C.P.A. (author), Reinicke Urruticoechea, C. (author)
Given the increasing interest for non-reciprocal materials, we propose a novel acoustic imaging method for layered non-reciprocal media. The method we propose is a modification of the Marchenko imaging method, which handles multiple scattering between the layer interfaces in a data-driven way. We start by reviewing the basic equations for wave...
journal article 2019
document
Wapenaar, C.P.A. (author)
The matrix-vector wave equation is a compact first-order differential equation. It was originally used for the analysis of elastodynamic plane waves in laterally invariant media. It has been extended by various authors for laterally varying media. Other authors derived a similar formalism for other wave phenomena. This paper starts with a...
journal article 2019
document
Reinicke Urruticoechea, C. (author), Wapenaar, C.P.A. (author)
The homogeneous Green’s function is the difference between an impulse response and its time-reversal. According to existing representation theorems, the homogeneous Green’s function associated with source–receiver pairs inside a medium can be computed from measurements at a boundary enclosing the medium. However, in many applications such as...
journal article 2019
document
Almagro Vidal, C. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author)
Time-lapse changes in the subsurface can be analyzed by comparing seismic reflection data from two different states, one serving as the base survey and the second as the monitor survey. Conventionally, reflection data are acquired by placing active seismic sources at the acquisition surface. Alternatively, these data can be acquired from passive...
journal article 2019
document
Meles, G.A. (author), van der Neut, J.R. (author), van Dongen, K.W.A. (author), Wapenaar, C.P.A. (author)
Wavefield focusing is often achieved by time-reversal mirrors, where wavefields emitted by a source located at the focal point are evaluated at a closed boundary and sent back, after time-reversal, into the medium from that boundary. Mathematically, time-reversal mirrors are derived from closed-boundary integral representations of reciprocity...
journal article 2019
Searched for: +
(21 - 40 of 148)

Pages