Searched for: +
(1 - 5 of 5)
document
He, S. (author), Mustafa, S. (author), Chang, Z. (author), Liang, M. (author), Schlangen, E. (author), Lukovic, M. (author)
In the current study, experiments and numerical simulations were carried out to investigate the cracking behavior of reinforced concrete beams consisting of a very thin layer (i.e., 1 cm in thickness) of SHCC in the concrete cover, tension zone. A novel type of SHCC/concrete interface that features a weakened chemical adhesion but an enhanced...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), He, S. (author), Schlangen, E. (author), Šavija, B. (author)
We propose a new numerical method to analyze the early-age creep of 3D printed segments with the consideration of stress history. The integral creep strain evaluation formula is first expressed in a summation form using superposition principle. The experimentally derived creep compliance surface is then employed to calculate the creep strain...
journal article 2023
document
Chang, Z. (author), Liang, M. (author), Chen, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Cementitious materials may exhibit significant creep at very early age. This is potentially important for concrete 3D printing, where the material is progressively loaded even before it sets. However, does creep actually affect the buildability of 3D printed concrete? Herein, the influence of early-age creep on the buildability of 3D printed...
journal article 2023
document
Xu, Y. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
Tailoring lattice structures is a commonly used method to develop lattice materials with desired mechanical properties. However, for cementitious lattice materials, besides the macroscopic lattice structure, the multi-phase microstructure of cement paste may have substantial impact on the mechanical responses. Therefore, this work proposes a...
journal article 2022
document
Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper reports an extended lattice model for printing process simulation of 3D printed cementitious materials. In this model, several influencing factors such as material and geometric nonlinearity are considered. Using this model, green strength of cementitious material is investigated, deformation and crack pattern can be derived, which...
book chapter 2020
Searched for: +
(1 - 5 of 5)