Searched for: +
(1 - 20 of 27)

Pages

document
Wapenaar, C.P.A. (author), Fokkema, J. (author), Snieder, R. (author)
We compare two approaches for deriving the fact that the Green’s function in an arbitrary inhomogeneous open system can be obtained by cross correlating recordings of the wave field at two positions. One approach is based on physical arguments, exploiting the principle of time-reversal invariance of the acoustic wave equation. The other approach...
journal article 2005
document
Snieder, R. (author), Wapenaar, C.P.A. (author), Larner, K. (author)
Seismic interferometry is a technique for estimating the Green's function that accounts for wave propagation between receivers by correlating the waves recorded at these receivers. We present a derivation of this principle based on the method of stationary phase. Although this derivation is intended to be educational, applicable to simple media...
journal article 2006
document
Curtis, A. (author), Gerstoft, P. (author), Sato, H. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
Turning noise into useful data—every geophysicist's dream? And now it seems possible. The field of seismic interferometry has at its foundation a shift in the way we think about the parts of the signal that are currently filtered out of most analyses—complicated seismic codas (the multiply scattered parts of seismic waveforms) and background...
journal article 2006
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, R. (author)
It has been shown by many authors that the cross correlation of two recordings of a diffuse wave field at different receivers yields the Green’s function between these receivers. Recently the theory has been extended for situations where time-reversal invariance does not hold (e.g., in attenuating media) and where source-receiver reciprocity...
journal article 2006
document
Snieder, R. (author), Wapenaar, K. (author), Wegler, U. (author)
journal article 2007
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, R. (author)
We have analyzed the far-field approximation of the Green's function representation for seismic interferometry. By writing each of the Green's functions involved in the correlation process as a superposition of a direct wave and a scattered wave, the Green's function representation is rewritten as a superposition of four terms. When the...
journal article 2010
document
Wapenaar, C.P.A. (author), Draganov, D.S. (author), Snieder, R. (author), Campman, X. (author), Verdel, A. (author)
Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain the Green's function between these receivers. For the simple situation of an impulsive plane wave propagating along the x-axis, the crosscorrelation of the responses at two receivers along the x-axis gives the Green's function of the direct wave...
journal article 2010
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, R. (author), Curtis, A. (author)
In the 1990s, the method of time-reversed acoustics was developed. This method exploits the fact that the acoustic wave equation for a lossless medium is invariant for time reversal. When ultrasonic responses recorded by piezoelectric transducers are reversed in time and fed simultaneously as source signals to the transducers, they focus at the...
journal article 2010
document
Broggini, F. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
With seismic interferometry one can retrieve the response to a virtual source inside an unknown medium, if there is a receiver at the position of the virtual source. Using inverse scattering theory, we demonstrate that, for a 1D medium, the requirement of having an actual receiver inside the medium can be circumvented, going beyond seismic...
journal article 2012
document
Wapenaar, C.P.A. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
The one-dimensional Marchenko equation forms the basis for inverse scattering problems in which the scattering object is accessible from one side only. Here we derive a three-dimensional (3D) Marchenko equation which relates the single-sided reflection response of a 3D inhomogeneous medium to a field inside the medium. We show that this equation...
journal article 2013
document
Hunziker, J.W. (author), Slob, E.C. (author), Fan, Y. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
With interferometry applied to controlled-source electromagnetic data, the direct field and the airwave and all other effects related to the air-water interface can be suppressed in a data-driven way. Interferometry allows for retreival of the scattered field Green’s function of the subsurface or, in other words, the subsurface reflection...
journal article 2013
document
Broggini, F. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e. waves bouncing multiple times between layers before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms incorrectly image...
journal article 2013
document
Van der Neut, J. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author), Throbecke, J.W. (author), Snieder, R. (author), Broggini, F. (author)
Recently, an iterative scheme has been introduced to retrieve the down- and upgoing Green's functions at an arbitrary level ?F inside an acoustic medium as if there were a source at the surface. This scheme requires as input the reflection response acquired at the surface and the direct arrival of the transmission response from the surface to...
journal article 2013
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Van der Neut, J. (author), Thorbecke, J.W. (author), Broggini, F. (author), Snieder, R. (author)
In recent work we showed with heuristic arguments that the Green's response to a virtual source in the subsurface can be obtained from reflection data at the surface. This method is called “Green's function retrieval beyond seismic interferometry”, because, unlike in seismic interferometry, no receiver is needed at the position of the virtual...
journal article 2013
document
Broggini, F. (author), Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Snieder, R. (author)
An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed...
journal article 2014
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Broggini, F. (author), Snieder, R. (author)
We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate that the filter is a focusing wavefield that...
journal article 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
The methodology of Green’s function retrieval by cross-correlation has led to many interesting applications for passive and controlled-source acoustic measurements. In all applications, a virtual source is created at the position of a receiver. Here a method is discussed for Green’s function retrieval from controlled-source reflection data,...
journal article 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
Traditionally, the Marchenko equation forms a basis for 1D inverse scattering problems. A 3D extension of the Marchenko equation enables the retrieval of the Green’s response to a virtual source in the subsurface from reflection measurements at the earth’s surface. This constitutes an important step beyond seismic interferometry. Whereas seismic...
journal article 2014
document
Broggini, F. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e., waves that have bounced multiple times between reflectors before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms...
journal article 2014
document
Behura, J. (author), Wapenaar, C.P.A. (author), Snieder, R. (author)
Conventional imaging algorithms assume single scattering and therefore cannot image multiply scattered waves correctly. The multiply scattered events in the data are imaged at incorrect locations resulting in spurious subsurface structures and erroneous interpretation. This drawback of current migration/imaging algorithms is especially...
journal article 2014
Searched for: +
(1 - 20 of 27)

Pages