Searched for: +
(1 - 13 of 13)
document
Keşkekler, A. (author)
Micro and nanomechanical resonators are essential to the state-of-the-art communication, data processing, timekeeping, and sensing systems. The discovery of graphene and other two-dimensional (2D) materials has been a profound source of inspiration for the next generation of these devices, owing to their exceptional mechanical, electrical, and...
doctoral thesis 2023
document
Liu, Hanqing (author)
This thesis provides a comprehensive research of both the mechanics and thermodynamics of suspended two-dimensional (2D) membranes, such as tunable mechanical resonance, membrane deformation, heat transport, phonon scattering, and energy dissipation. These characteristics make nanomechanical resonators, made of a suspended 2D membrane, promising...
doctoral thesis 2023
document
Houmes, M.J.A. (author), Baglioni, G. (author), Siskins, M. (author), Lee, M. (author), Esteras, Dorye L. (author), Mañas Valero, S. (author), Blanter, Y.M. (author), Steeneken, P.G. (author), van der Zant, H.S.J. (author)
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. We show that its temperature dependence in AF MPS3 (M(II) = Fe, Co, Ni)...
conference paper 2023
document
Baglioni, G. (author), Siskins, M. (author), Houmes, M.J.A. (author), Lee, M. (author), Shin, D. (author), Mañas Valero, S. (author), Coronado, Eugenio (author), Blanter, Y.M. (author), van der Zant, H.S.J. (author), Steeneken, P.G. (author)
Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic order, which is difficult to achieve with external magnets,...
journal article 2023
document
Siskins, M. (author)
This thesis studies higher-order material properties* and effects in van der Waals crystals, such as anisotropic Young’s modulus, magnetostriction, and non-trivial thermal expansion effects near magnetic and electronic phase transitions, that can affect the nanomechanical motion ofmultilayer two-dimensional (2D) material membranes. These...
doctoral thesis 2021
document
Dolleman, R.J. (author)
Micro and nanomechanical sensors are indispensable in modern consumer electronics, automotive and medical industries. Gas pressure sensors are currently the most widespread membrane-based micromechanical sensors. By reducing their size, their unit costs and energy consumption drops, making them more attractive for integration in new applications...
doctoral thesis 2018
document
Davidovikj, D. (author)
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research topics that are discussed can bedivided into...
doctoral thesis 2018
document
Davidovikj, D. (author), Bouwmeester, Damian (author), van der Zant, H.S.J. (author), Steeneken, P.G. (author)
We report on the development of a pneumatically coupled graphene membrane system, comprising of two circular cavities connected by a narrow trench. Both cavities and the trench are covered by a thin few-layer graphene membrane to form a sealed dumbbell-shaped chamber. Local electrodes at the bottom of each cavity allow for actuation of each...
journal article 2018
document
Davidovikj, D. (author), Scheepers, P.H. (author), van der Zant, H.S.J. (author), Steeneken, P.G. (author)
To realize nanomechanical graphene-based pressure sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electromechanical systems, gets increasingly challenging as one starts shrinking the dimensions of these devices because the expected...
journal article 2017
document
Van Leeuwen, R. (author)
In this thesis the physics of nanoscale mechanical resonators and oscillators is studied. We discuss two types of resonators. First, a top-down fabricated doubly clamped beam resonator with an integrated piezoelectric actuator is introduced. The second type of resonators are based on layered two-dimensional materials, such as graphene and...
doctoral thesis 2015
document
Poot, M. (author)
This thesis describes experiments that were done with a wide range of nano(electro)mechanical systems (NEMS). These devices are promising candidates to study mechanics in the quantum regime. The experiments range from AFM measurements on few-layer graphene nanodrums, electrical detection of flexural modes of suspended carbon nanotubes both at...
doctoral thesis 2009
document
Sapmaz, S. (author)
Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small size a quantum dot has a discrete set of energy...
doctoral thesis 2006
document
Kovalev, A.A. (author)
Only charge degree of freedom is utilized in most electronic devices. The use of the spin degree of freedom is relatively recent. The discovery of the Giant Magnetoresistance (GMR) effect initiated the development of magnetoelectronics - the field that studies effects on electron transport involving the spin degree of freedom. GMR is a very...
doctoral thesis 2006
Searched for: +
(1 - 13 of 13)