Searched for: +
(1 - 3 of 3)
document
Van Zuijlen, A.H. (author), Bijl, H. (author)
Computational fluid-structure interaction is most commonly performed using a partitioned approach. For strongly coupled problems sub-iterations are required, increasing computational time as flow and structure have to be resolved multiple times every time step. Many sub-iteration techniques exist that improve robustness and convergence, although...
conference paper 2009
document
Witteveen, J.A.S. (author), Bijl, H. (author)
A monomial chaos approach is proposed for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can still be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equations which can be coupled. The proposed...
conference paper 2006
document
Witteveen, J.A.S. (author), Bijl, H. (author)
A monomial chaos approach is proposed for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can still be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equations which can be coupled. The proposed...
conference paper 2006