Searched for: +
(1 - 20 of 28)

Pages

document
Wapenaar, C.P.A. (author), Brackenhoff, J. (author), De Ridder, S. (author), Slob, E.C. (author), Snieder, R. (author)
Green’s functions and propagator matrices are both solutions of the wave equation, but whereas Green’s functions obey a causality condition in time (G = 0 for t < 0), propagator matrices obey a boundary condition in space. Marchenko-type focusing functions focus a wave field in space at zero time. We discuss the mutual relations between Green...
conference paper 2023
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, Giovanni Angelo (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown elastic layered medium can be retrieved from single-sided reflection data by solving a Marchenko equation. This methodology requires a priori knowledge of all forward-scattered (non-converted and converted) waveforms. Moreover, the medium should satisfy stringent monotonicity conditions, which are often not met in...
conference paper 2022
document
van der Neut, J.R. (author), Brackenhoff, J. (author), Meles, G. (author), Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Green’s functions in an unknown medium can be retrieved from single-sided reflection data by solving a multidimensional Marchenko equation. This methodology requires knowledge of the direct wavefield throughout the medium, which should include forward-scattered waveforms. In practice, the direct field is often computed in a smooth background...
conference paper 2021
document
Wapenaar, C.P.A. (author), Staring, M. (author), Brackenhoff, J.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Slob, E.C. (author)
Since the introduction of the Marchenko method in geophysics, many variants have been developed. Using a compact unified notation, we review redatuming by multidimensional deconvolution and by double focusing, virtual seismology, double dereverberation and transmission-compensated Marchenko multiple elimination, and discuss the underlying...
conference paper 2020
document
Meles, G.A. (author), Zhang, L. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Seismic images provided by reverse time migration can be contaminated by artefacts associated with the migration of multiples.<br/><br/>Multiples can corrupt seismic images, producing both false positives, i.e. by focusing energy at unphysical interfaces, and false negatives, i.e. by destructively interfering with primaries. Multiple-related...
conference paper 2020
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Thorbecke, J.W. (author), van der Neut, J.R. (author), Slob, E.C. (author)
Marchenko imaging is a novel imaging technique that is capable to retrieve images from single-sided reflection measurements free of artefacts related to internal multiples (e.g. Behura et al., 2014; Broggini et al., 2012). An essential ingredient of Marchenko imaging is the so-called focusing function which can<br/>be retrieved from reflection...
conference paper 2018
document
Wapenaar, C.P.A. (author), Brackenhoff, J.A. (author), Staring, M. (author), Thorbecke, J.W. (author), Slob, E.C. (author)
Recent developments in exploration seismology have enabled the creation of virtual sources and/or virtual receivers in the subsurface from reflection measurements at the earth's surface. Unlike in seismic interferometry, no physical instrument (receiver or source) is needed at the position of the virtual source or receiver. Moreover, no detailed...
conference paper 2018
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Treitel, Sven (author)
We derive a fast acoustic inversion method for a piecewise homogeneous horizontally layered medium. The method obtains medium parameters from the reflection response. The method can be implemented to obtain the parameters on either side of a reflector at an arbitrary depth. Three processing steps lead to the inversion result. First, we solve a...
conference paper 2018
document
Alkhimenkov, Y. (author), Brackenhoff, J.A. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Marchenko Imaging is a new technology in geophysics, which enables us to retrieve Green's functions at any point in the subsurface having only reflection data. One of the assumptions of the Marchenko method is that the medium is lossless. One way to circumvent this assumption is to find a compensation parameter for the lossy reflection series so...
conference paper 2018
document
Zhang, L. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author), van der Neut, J.R. (author)
A revised Marchenko scheme that avoids the need to compute the Green’s function is presented for artefact-free image of the subsurface with single-sided reflection response as input. The initial downgoing Green’s function which can be modelled from a macro model is needed for solving the revised Marchenko equations instead of its inverse. The...
conference paper 2018
document
Slob, E.C. (author), Wapenaar, C.P.A. (author)
We present a three-dimensional scheme that can be used to compute the electromagnetic impulse response between any two subsurface points from surface reflection data measured at a single surface of a lossless medium. The scheme first computes a virtual vertical radar profile using the Marchenko scheme from which focusing wavefields are...
conference paper 2017
document
Slob, E.C. (author), Zhang, L. (author), Wapenaar, C.P.A. (author)
A modified implementation of Marchenko redatuming leads to a filter that removes internal multiples from reflection data. It produces local reflectivity at two-way travel time. The method creates new primary reflections resulting from emitted events that eliminate internal multiples. We call these non-physical<br/>primaries and their presence is...
conference paper 2017
document
Wapenaar, C.P.A. (author), Slob, E.C. (author)
In a time-lapse experiment, changes in a reservoir cause changes in the reflection response. We discuss a method which predicts these changes from the baseline survey and a model of the changed reservoir. This method, which takes all multiple<br/>scattering into account, is significantly more efficient than modeling the response of the entire...
conference paper 2017
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Slob, E.C. (author)
The question whether multiples are signal or noise is subject of ongoing debate. In this paper we consider correlation and deconvolution imaging methods and analyse to what extent multiples contribute to the image in these methods. Our starting point is the assumption that at a specific depth level the full downgoing and upgoing fields (both...
conference paper 2017
document
Slob, E.C. (author), Wapenaar, C.P.A. (author)
The theory of data-driven true amplitude migration is presented for multicomponent marine seismic data. The Marchenko scheme is adapted to account for the ghost, free surface and internal multiple effects and works without the need to know the source wavelet. A true amplitude image is formed from the obtained focusing functions without ghost...
conference paper 2017
document
Slob, E.C. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author)
We present a scheme for Marchenko imaging in a dissipative heterogeneous medium. The scheme requires measured reflection and transmission data at two sides of the dissipative medium. The effectual medium is the same as the dissipative medium, but with negative dissipation. We show how the measured double-sided data can be combined to obtain the...
conference paper 2016
document
Wapenaar, C.P.A. (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Singh, Satyan (author)
The homogeneous Green’s function (i.e., the Green’s function and its time-reversed counterpart) plays an important role in optical, acoustic and seismic holography, in inverse scattering methods, in the field of time-reversal acoustics, in reversetime migration and in seismic interferometry. Starting with the classical closed-boundary...
conference paper 2016
document
Zhang, L. (author), Slob, E.C. (author), van der Neut, J.R. (author), Staring, M. (author), Wapenaar, C.P.A. (author)
We present a one-dimensional lossless scheme to compute an image of a dissipative medium from two single-sided reflection responses. One reflection response is measured at or above the top reflector of a dissipative medium and the other reflection response is computed as if measured at or above the top reflector of a medium with negative...
conference paper 2016
document
Wapenaar, C.P.A. (author), Slob, E.C. (author)
Building on acoustic autofocusing in 1D media, we previously proposed acoustic Marchenko imaging for 1D and 3D media. Recently, the first steps have been set towards extending the single-sided Marchenko method to the elastodynamic situation. Here we discuss the extension of single-sided Marchenko focusing, Green's function retrieval and imaging...
conference paper 2015
document
Van der Neut, J.R. (author), Thorbecke, J.W. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Focusing functions are defined as wavefields that focus at a specified location in a heterogeneous subsurface. These functions can be directly related to Green's functions and hence they can be used for seismic imaging of complete wavefields, including not only primary reflections but all orders of internal multiples. Recently, it has been shown...
conference paper 2015
Searched for: +
(1 - 20 of 28)

Pages