Searched for: +
(1 - 20 of 27)

Pages

document
Wapenaar, C.P.A. (author), Dukalski, Marcin (author), Reinicke, Christian (author), Snieder, Roel (author)
Many seismic imaging methods use wavefield extrapolation operators to redatum sources and receivers from the surface into the subsurface. We discuss wavefield extrapolation operators that account for internal multiple reflections, in particular propagator matrices, transfer matrices and Marchenko focusing functions. A propagator matrix is a...
journal article 2023
document
Diekmann, Leon (author), Vasconcelos, Ivan (author), Wapenaar, C.P.A. (author), Slob, E.C. (author), Snieder, Roel (author)
Marchenko-type integrals typically relate so-called focusing functions and Green's functions via the reflection response measured on the open surface of a volume of interest. Originating from one dimensional inverse scattering theory, the extension to two and three dimensions set in motion various new developments regarding imaging in complex...
journal article 2023
document
Kiraz, Mert S. R. (author), Snieder, Roel (author), Wapenaar, C.P.A. (author)
The Gel'fand-Levitan equation, the Gopinath-Sondhi equation, and the Marchenko equation are developed for one-dimensional inverse scattering problems. Recently, a version of the Marchenko equation based on wavefield decomposition has been introduced for focusing waves in multi dimensions. However, wavefield decomposition is a limitation when...
journal article 2021
document
Wapenaar, C.P.A. (author), Snieder, Roel (author), de Ridder, Sjoerd (author), Slob, E.C. (author)
Marchenko methods are based on integral representations which express Green’s functions for virtual sources and/or receivers in the subsurface in terms of the reflection response at the surface. An underlying assumption is that inside the medium the wave field can be decomposed into downgoing and upgoing waves and that evanescent waves can be...
journal article 2021
document
Singh, S. (author), Snieder, R (author), van der Neut, J.R. (author), Thorbecke, J.W. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author)
Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach for understanding the subsurface. We have...
journal article 2017
document
Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Thorbecke, J.W. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
journal article 2015
document
Singh, S. (author), Snieder, R. (author), Behura, J. (author), van der Neut, J.R. (author), Wapenaar, C.P.A. (author), Slob, E.C. (author)
Recent work on retrieving the Green’s function with the Marchenko equation shows how these functions for a virtual source in the subsurface can be obtained from reflection data. The response to the virtual source is the Green’s function from the location of the virtual source to the surface. The Green’s function is retrieved using only the...
journal article 2015
document
Behura, J. (author), Wapenaar, C.P.A. (author), Snieder, R. (author)
Conventional imaging algorithms assume single scattering and therefore cannot image multiply scattered waves correctly. The multiply scattered events in the data are imaged at incorrect locations resulting in spurious subsurface structures and erroneous interpretation. This drawback of current migration/imaging algorithms is especially...
journal article 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
Traditionally, the Marchenko equation forms a basis for 1D inverse scattering problems. A 3D extension of the Marchenko equation enables the retrieval of the Green’s response to a virtual source in the subsurface from reflection measurements at the earth’s surface. This constitutes an important step beyond seismic interferometry. Whereas seismic...
journal article 2014
document
Broggini, F. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e., waves that have bounced multiple times between reflectors before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms...
journal article 2014
document
Wapenaar, C.P.A. (author), Thorbecke, J.W. (author), Van der Neut, J.R. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
The methodology of Green’s function retrieval by cross-correlation has led to many interesting applications for passive and controlled-source acoustic measurements. In all applications, a virtual source is created at the position of a receiver. Here a method is discussed for Green’s function retrieval from controlled-source reflection data,...
journal article 2014
document
Slob, E.C. (author), Wapenaar, C.P.A. (author), Broggini, F. (author), Snieder, R. (author)
We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate that the filter is a focusing wavefield that...
journal article 2014
document
Broggini, F. (author), Wapenaar, C.P.A. (author), Van der Neut, J.R. (author), Snieder, R. (author)
An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed...
journal article 2014
document
Broggini, F. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
Standard imaging techniques rely on the single scattering assumption. This requires that the recorded data do not include internal multiples, i.e. waves bouncing multiple times between layers before reaching the receivers at the acquisition surface. When multiple reflections are present in the data, standard imaging algorithms incorrectly image...
journal article 2013
document
Van der Neut, J. (author), Slob, E.C. (author), Wapenaar, C.P.A. (author), Throbecke, J.W. (author), Snieder, R. (author), Broggini, F. (author)
Recently, an iterative scheme has been introduced to retrieve the down- and upgoing Green's functions at an arbitrary level ?F inside an acoustic medium as if there were a source at the surface. This scheme requires as input the reflection response acquired at the surface and the direct arrival of the transmission response from the surface to...
journal article 2013
document
Wapenaar, C.P.A. (author), Slob, E.C. (author), Van der Neut, J. (author), Thorbecke, J.W. (author), Broggini, F. (author), Snieder, R. (author)
In recent work we showed with heuristic arguments that the Green's response to a virtual source in the subsurface can be obtained from reflection data at the surface. This method is called “Green's function retrieval beyond seismic interferometry”, because, unlike in seismic interferometry, no receiver is needed at the position of the virtual...
journal article 2013
document
Hunziker, J.W. (author), Slob, E.C. (author), Fan, Y. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
With interferometry applied to controlled-source electromagnetic data, the direct field and the airwave and all other effects related to the air-water interface can be suppressed in a data-driven way. Interferometry allows for retreival of the scattered field Green’s function of the subsurface or, in other words, the subsurface reflection...
journal article 2013
document
Wapenaar, C.P.A. (author), Broggini, F. (author), Slob, E.C. (author), Snieder, R. (author)
The one-dimensional Marchenko equation forms the basis for inverse scattering problems in which the scattering object is accessible from one side only. Here we derive a three-dimensional (3D) Marchenko equation which relates the single-sided reflection response of a 3D inhomogeneous medium to a field inside the medium. We show that this equation...
journal article 2013
document
Broggini, F. (author), Snieder, R. (author), Wapenaar, C.P.A. (author)
With seismic interferometry one can retrieve the response to a virtual source inside an unknown medium, if there is a receiver at the position of the virtual source. Using inverse scattering theory, we demonstrate that, for a 1D medium, the requirement of having an actual receiver inside the medium can be circumvented, going beyond seismic...
journal article 2012
document
Wapenaar, C.P.A. (author), Draganov, D.S. (author), Snieder, R. (author), Campman, X. (author), Verdel, A. (author)
Seismic interferometry involves the crosscorrelation of responses at different receivers to obtain the Green's function between these receivers. For the simple situation of an impulsive plane wave propagating along the x-axis, the crosscorrelation of the responses at two receivers along the x-axis gives the Green's function of the direct wave...
journal article 2010
Searched for: +
(1 - 20 of 27)

Pages