Searched for: author%3A%22Patra%2C+B%22
(1 - 11 of 11)
document
Patra, B (author)
Quantum computers can provide exponential speedup in solving certain computational problems pertaining to drug discovery, cybersecurity, weather forecasting, etc. Although a quantum computer with just 50-qubits has been shown to surpass the computing power of the best supercomputers in specific applications, millions of qubits would be required...
doctoral thesis 2021
document
Xue, X. (author), Patra, B (author), van Dijk, J.P.G. (author), Samkharadze, Nodar (author), Corna, A. (author), Paquelet Wuetz, B. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Sebastiano, F. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Vandersypen, L.M.K. (author)
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications<sup>1</sup>. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the...
journal article 2021
document
Prabowo, B. (author), Zheng, G. (author), Mehrpoo, M. (author), Patra, B (author), Harvey-Collard, P. (author), Dijkema, J.J. (author), Sammak, Amir (author), Scappucci, G. (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Vandersypen, L.M.K. (author), Babaie, M. (author)
Quantum computers (QC) promise to solve certain computational problems exponentially faster than a classical computer due to the superposition and entanglement properties of quantum bits (qubits). Among several qubit technologies, spin qubits are a promising candidate for large-scale QC, since (1) they have a small footprint allowing them to...
conference paper 2021
document
Patra, B (author), van Dijk, J.P.G. (author), Corna, A. (author), Xue, X. (author), Samkharadze, Nodar (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Babaie, M. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
Quantum computers (QC), comprising qubits and a classical controller, can provide exponential speed-up in solving certain problems. Among solid-state qubits, transmons and spin-qubits are the most promising, operating « 1K. A qubit can be implemented in a physical system with two distinct energy levels representing the |0) and |1) states, e.g...
conference paper 2020
document
Patra, B (author), Mehrpoo, M. (author), Ruffino, A. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author)
This paper presents the characterization and modeling of microwave passive components in TSMC 40-nm bulk CMOS, including metal-oxide-metal (MoM) capacitors, transformers, and resonators, at deep cryogenic temperatures (4.2 K). To extract the parameters of the passive components, the pad parasitics were de-embedded from the test structures using...
journal article 2020
document
Van DIjk, Jeroen Petrus Gerardus (author), Patra, B (author), Xue, X. (author), Samkharadze, Nodar (author), Corna, A. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author), Sebastiano, F. (author)
Building a large-scale quantum computer requires the co-optimization of both the quantum bits (qubits) and their control electronics. By operating the CMOS control circuits at cryogenic temperatures (cryo-CMOS), and hence in close proximity to the cryogenic solid-state qubits, a compact quantum-computing system can be achieved, thus promising...
journal article 2020
document
van Dijk, J.P.G. (author), Patra, B (author), Pellerano, Stefano (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
The design of a large-scale quantum computer requires co-optimization of both the quantum bits (qubits) and their control electronics. This work presents the first systematic design of such a controller to simultaneously and accurately manipulate the states of multiple spin qubits or transmons. By employing both analytical and simulation...
journal article 2020
document
Sebastiano, F. (author), van Dijk, J.P.G. (author), Thart, P. A. (author), Patra, B (author), van Staveren, J. (author), Xue, X. (author), Almudever, Carmen G. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Vladimirescu, A. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author)
Cryogenic CMOS (cryo-CMOS) is a viable technology for the control interface of the large-scale quantum computers able to address non-trivial problems. In this paper, we demonstrate state-of-the-art cryo-CMOS circuits and systems for such application and we discuss the challenges still to be faced on the path towards practical quantum...
conference paper 2020
document
Patra, B (author), Incandela, R.M. (author), van Dijk, J.P.G. (author), Homulle, Harald (author), Song, Lin (author), Shahmohammadi, M. (author), Staszewski, R.B. (author), Vladimirescu, A. (author), Babaie, M. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum...
contribution to periodical 2018
document
Homulle, Harald (author), Visser, Stefan (author), Patra, B (author), Charbon-Iwasaki-Charbon, E. (author)
In this paper, we show how a deep-submicron field-programmable gate array (FPGA) can be operated more stably at extremely low temperatures through special firmware design techniques. Stability at low temperatures is limited through long power supply wires and reduced performance of various printed circuit board components commonly employed at...
journal article 2018
document
Homulle, Harald (author), Visser, Stefan (author), Patra, B (author), Ferrari, Giorgio (author), Prati, Enrico (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop....
journal article 2017
Searched for: author%3A%22Patra%2C+B%22
(1 - 11 of 11)