ST

Seigo Tarucha

Authored

5 records found

Fault-tolerant quantum computers that can solve hard problems rely on quantum error correction1. One of the most promising error correction codes is the surface code2, which requires universal gate fidelities exceeding an error correction threshold of 99 per cent3. Among the many ...
Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation. Among the many qubit platforms, spin qubits in silicon quantum dots are promising for large-scale int ...
Because of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates. ...
Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer owing to their compatibility with semiconductor manufacturing technologies. Recent experiments in this system have demonstrated crucial technologies, including high-fidelity quantum g ...
Polarization is a fundamental property of light and could provide various solutions to the development of secure optical communications with high capacity and high speed. In particular, the coherent quantum state conversion between single photons and single electron spins is a pr ...