DD

Authored

20 records found

Studying genomic processes at the single-molecule level

Introducing the tools and applications

To understand genomic processes such as transcription, translation or splicing, we need to be able to study their spatial and temporal organization at the molecular level. Single-molecule approaches provide this opportunity, allowing researchers to monitor molecular conformations ...

Biological magnetometry

The torque on superparamagnetic beads in magnetic fields

Biological magnetometry

The torque on superparamagnetic beads in magnetic fields

Biological magnetometry

The torque on superparamagnetic beads in magnetic fields

Biological magnetometry

The torque on superparamagnetic beads in magnetic fields

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers ...
The bidirectional replication of a circular chromosome by many bacteria necessitates proper termination to avoid the head-on collision of the opposing replisomes. In Escherichia coli, replisome progression beyond the termination site is prevented by Tus proteins bound to asymmetr ...
RNA viruses pose a threat to public health that is exacerbated by the dearth of antiviral therapeutics. The RNA-dependent RNA polymerase (RdRp) holds promise as a broad-spectrum, therapeutic target because of the conserved nature of the nucleotide-substrate-binding and catalytic ...
In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA binding protein from sta ...
RNA virus survival depends on efficient viral genome replication, which is performed by the viral RNA dependent RNA polymerase (RdRp). The recent development of high throughput magnetic tweezers has enabled the simultaneous observation of dozens of viral RdRp elongation traces on ...
Transcription in bacteria is controlled by multiple molecular mechanisms that precisely regulate gene expression. It has been recently shown that initial RNA synthesis by the bacterial RNA polymerase (RNAP) is interrupted by pauses; however, the pausing determinants and the relat ...
Transcription initiation is the first step in gene expression, and is therefore strongly regulated in all domains of life. The RNA polymerase (RNAP) first associates with the initiation factor σ to form a holoenzyme, which binds, bends and opens the promoter in a succession of re ...
The mechanical properties of DNA fundamentally constrain and enable the storage and transmission of genetic information and its use in DNA nanotechnology. Many properties of DNA depend on the ionic environment due to its highly charged backbone. In particular, both theoretical an ...
Single-molecule experiments provide a unique means for real-time observation of the activity of individual biomolecular machines. Through such techniques, insights into the mechanics of for example, polymerases, helicases, and packaging motors have been gleaned. Here we describe ...
Transcription in RNA viruses is highly dynamic, with a variety of pauses interrupting nucleotide addition by RNA-dependent RNA polymerase (RdRp). For example, rare but lengthy pauses (>20 s) have been linked to backtracking for viral single-subunit RdRps. However, while such back ...
Transcription in RNA viruses is highly dynamic, with a variety of pauses interrupting nucleotide addition by RNA-dependent RNA polymerase (RdRp). For example, rare but lengthy pauses (>20 s) have been linked to backtracking for viral single-subunit RdRps. However, while such back ...
http://nar.oxfordjournals.org/content/early/2014/08/19/nar.gku677.abstract@en
http://nar.oxfordjournals.org/content/early/2014/08/19/nar.gku677.abstract@en