KS
Klamer Schutte
3 records found
1
Many real-world applications, from sport analysis to surveillance, benefit from automatic long-term action recognition. In the current deep learning paradigm for automatic action recognition, it is imperative that models are trained and tested on datasets and tasks that evaluate
...
Video BagNet
Short temporal receptive fields increase robustness in long-term action recognition
Previous work on long-term video action recognition relies on deep 3D-convolutional models that have a large temporal receptive field (RF). We argue that these models are not always the best choice for temporal modeling in videos. A large temporal receptive field allows the model
...
Long-Term activities involve humans performing complex, minutes-long actions. Differently than in traditional action recognition, complex activities are normally composed of a set of sub-actions, that can appear in different order, duration, and quantity. These aspects introduce
...