Authored

11 records found

Hypothesis Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible di ...
We compare the flow behavior of viscoelastic surfactant (VES) solutions and Newtonian fluids through two different model porous media having similar permeability: (a) a 3D random packed bed and (b) a microchannel with a periodically spaced pillars. The former provides much larger ...
We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid inte ...
We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid inte ...
We report on simulations of an unsteady three dimensional viscoelastic fluid flow through a model porous medium, employing a finite volume methodology (FVM) with a staggered grid. Boundary conditions at the walls of the porous structures are imposed using a second order immersed ...
We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid inter ...
We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid inter ...
In this work, we investigate the influence of channel structure and fluid rheology on non-inertial migration of non-Brownian polystyrene beads. Particle migration in this regime can be found in biomedical, chemical, environmental and geological applications. However, the effect o ...
We investigate creeping flow of a viscoelastic fluid through a three dimensional random porous medium using computational fluid dynamics. The simulations are performed using a finite volume methodology with a staggered grid. The no slip boundary condition on the fluid-solid inter ...
It is known that viscoelastic fluids exhibit elastic instabilities in simple shear flow and flow with curved streamlines. During flow through a straight microchannel with pillars, we found strikingly strong hydrodynamic instabilities characterized by very large transversal excurs ...
It is known that viscoelastic fluids exhibit elastic instabilities in simple shear flow and flow with curved streamlines. During flow through a straight microchannel with pillars, we found strikingly strong hydrodynamic instabilities characterized by very large transversal excurs ...