JH

J. A.M. Hans Kuipers

Authored

20 records found

Fluidization of spherical versus elongated particles

Experimental investigation using magnetic particle tracking

In biomass processing fluidized beds are used to process granular materials where particles typically possess elongated shapes. However, for simplicity, in computer simulations particles are often considered spherical, even though elongated particles experience more complex parti ...
We investigate the collision behaviour of a shear thinning non-Newtonian fluid xanthan, by binary droplet collision experiments. Droplet collisions of non-Newtonian fluids are more complex than their Newtonian counterpart as the viscosity no longer remains constant during the col ...

Bubble characterstics in a 3-D gas-solid fluidized bed

Predictions from ultra-fast x-ray tomography and twofluid model

The bubble characteristics in a 3-D cylindrical fluidized bed have been investigated both experimentally and numerically. Experiments were performed on a 0.1 m diameter fluidized bed, with alumina oxide particles (diameter ~1 mm) as a fluidizing material. Measurements were done a ...

Modification of kinetic theory of granular flow for frictional spheres

Part I: Two-fluid model derivation and numerical implementation

A parallel and scalable stochastic Direct Simulation Monte Carlo (DSMC) method applied to large-scale dense bubbly flows is reported in this paper. The DSMC method is applied to speed up the bubble-bubble collision handling relative to the Discrete Bubble Model proposed by Darman ...
A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magni ...
In this paper, an accurate and stable sharp interface immersed boundary method(IBM) is presented for the direct numerical simulation of particle laden flows. The current IBM method is based on the direct-forcing method by incorporating the ghost-cell approach implicitly. An impor ...
Hypothesis Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible di ...
In this experimental study the segregation behavior for fluidized mixtures of spherical and cylindrical particles is investigated. In industry, fluidization of particles featuring a wide range of shapes is common in various applications such as biomass gasification, drying applic ...
Particle based approaches are one of the recent modeling techniques to overcome the computational limitation in multiscale modeling of complex processes, for example a heterogeneous catalytic reactor. We propose an efficient model for a chemical reactor where hydrodynamics of the ...
In this work we investigate droplet-droplet collision interactions in a spray system using an Eulerian-Lagrangian model with subgrid turbulence dispersion. The effect of different droplet viscosities on the type and frequency of droplet collision is investigated, knowledge of whi ...
Accurate direct numerical simulations are performed to determine the drag, lift and torque coefficients of non-spherical particles. The numerical simulations are performed using the lattice Boltzmann method with multi-relaxation time. The motivation for this work is the need for ...
Large scale simulation models can aid in improving the design of spray dryers. In this work an Eulerian-Lagrangian model with coupled gas phase and droplet heat and mass transfer balances is used to study airflow dynamics, temperature and humidity profiles at different positions ...
In this work, we perform simulations of particle laden flow in a wide and long narrow channel in a Newtonian fluid. Simulations are performed for mono-sized and equal density spheres with varying Archimedes and Reynolds number. In the simulations, different phases of particle tra ...
Bubble characteristics in a three-dimension gas-fluidized bed (FB) have been measured using noninvasive ultrafast electron beam X-ray tomography. The measurements are compared with predictions by a two-fluid model (TFM) based on kinetic theory of granular flow. The effect of bed ...
Bubble characteristics in a three-dimension gas-fluidized bed (FB) have been measured using noninvasive ultrafast electron beam X-ray tomography. The measurements are compared with predictions by a two-fluid model (TFM) based on kinetic theory of granular flow. The effect of bed ...
We numerically study the impact of a large sphere dropping into a prefluidized granular bed using a state-of-the-art hybrid discrete particle and immersed boundary (DP-IB) method. For the first time, both the gas-induced drag force and the contact force exerted on the intruder ar ...
We numerically study the impact of a large sphere dropping into a prefluidized granular bed using a state-of-the-art hybrid discrete particle and immersed boundary (DP-IB) method. For the first time, both the gas-induced drag force and the contact force exerted on the intruder ar ...
The effect of normal restitution coefficient and friction coefficient on the hydrodynamics of a dense bubbling solid-gas fluidized bed is investigated using a two fluid model (TFM) based on our kinetic theory of granular flow (KTGF) for rotating frictional particles. A comparison ...