M. Khadijeh
5 records found
1
Physics Informed Neural Networks (PINNs) have been rarely applied to solve multiphysics systems due to the inherent challenges in optimizing their complex loss functions, which typically incorporate multiple physics-based terms. This study presents a multistage PINN approach desi
...
The chemo-mechanical properties of bitumen undergo significant alternations during aging and rejuvenation, posing challenges for accurately evaluating and enhancing rejuvenation efficiency in asphalt recycling. This study investigates how bitumen source, aging degree, rejuvenator
...
Asphalt binders are critical for asphalt pavement performance, and understanding their rheological behavior is essential for designing durable roadways. The complex shear modulus (G⁎) and phase angle (δ) are primary parameters characterizing binder rheology. This study introduces
...
Exploring the roles of numerical simulations and machine learning in multiscale paving materials analysis
Applications, challenges, best practices
The complex structure of bituminous mixtures ranging from nanoscale binder components to macroscale pavement performance requires a comprehensive approach to material characterization and performance prediction. This paper provides a critical analysis of advanced techniques in pa
...
Het effect van wrijvingsreductie methoden in de Triaxiale Cyclische Drukproef op Asfalt (weerstand tegen permanente vervorming)
EN 12697-25:2005 versus EN 12697-25:2016, Method B: triaxial Cyclic Compression
In dit rapport wordt een onderzoek beschreven met vijf verschillende wrijvingsreductiesystemen. De aanleiding was een verandering in de EN 12697-25, waarbij Latex wrijvingsreductie vervangen is door Teflon, terwijl er flink wat onderzoek is dat liet zien dat Teflon voor asfalt mi
...