VM

V. Murugesan

Authored

12 records found

Multi-species electrochemical reaction modeling using lattice Boltzmann method

Study of transport phenomena in alkaline water electrolyzer

Enhancing the efficiency of industrial water electrolysis for hydrogen production is vital for the energy transition. In Alkaline Water Electrolysis (AWE), hydrogen is produced at the cathode, and the bubbles are formed when the local hydrogen concentration exceeds the solubility ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...

Geometry dependence of two-level-system noise and loss in a - Si C

H parallel-plate capacitors for superconducting microwave resonators

Parallel-plate capacitors (PPC) significantly reduce the size of superconducting microwave resonators, reducing the pixel pitch for arrays of single-photon energy-resolving kinetic inductance detectors (KIDs). The frequency noise of KIDs is typically limited by tunneling two-leve ...
Typical materials for optical Microwave Kinetic Inductance Detetectors (MKIDs) are metals with a natural absorption of ∼ 30–50% in the visible and near-infrared. To reach high absorption efficiencies (90–100%) the KID must be embedded in an optical stack. We show an optical stack ...
A noiseless, photon-counting detector, which resolves the energy of each photon, could radically change astronomy, biophysics, and quantum optics. Superconducting detectors promise an intrinsic resolving power at visible wavelengths of R=E/δE≈100 due to their low excitation energ ...
We measure temperature-dependent quasiparticle fluctuations in a small Al volume, embedded in a NbTiN superconducting microwave resonator. The resonator design allows for readout close to equilibrium. By placing the Al film on a membrane, we enhance the fluctuation level and sepa ...
Microfabrication of on-chip filterbanks, such as DESHIMA 2.0, would greatly benefit from reliable fabrication with sub-micrometer resolution. This enables smaller devices and reduces scatter in parameters such as filter bandwidth and resonant frequency. Here we present “mix-and-m ...
Microfabrication of on-chip filterbanks, such as DESHIMA 2.0, would greatly benefit from reliable fabrication with sub-micrometer resolution. This enables smaller devices and reduces scatter in parameters such as filter bandwidth and resonant frequency. Here we present “mix-and-m ...