JR

Juan M. Rey

Authored

20 records found

Autonomous microgrids are a suitable solution for off-grid electrification in terms of costs and reliability. The correct sizing of its generation and storage systems ensures efficient utilization of the available energy resources. Generally, many sizing approaches assume optimiz ...
This paper presents a distributed strategy for the optimal dispatch of islanded microgrids, modeled as unbalanced three-phase electrical distribution systems. To set the dispatch of the distributed generation (DG) units, an optimal generation problem is stated and solved distribu ...
This paper presents a distributed strategy for the optimal dispatch of islanded microgrids, modeled as unbalanced three-phase electrical distribution systems. To set the dispatch of the distributed generation (DG) units, an optimal generation problem is stated and solved distribu ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
In this paper, a new and generalized model for the optimal operation of microgrids is presented. The proposed mathematical model considers both the grid-connected (GC) and islanded (IS) operational modes. First, a mixed integer non-linear programming (MINLP) formulation is introd ...
The need for new generation systems has motivated the development of microgrids. This new concept may provide significant benefits such as losses reduction, high degree of efficiency and reliability to the transmission and distribution networks. This paper presents generalities a ...
The need for new generation systems has motivated the development of microgrids. This new concept may provide significant benefits such as losses reduction, high degree of efficiency and reliability to the transmission and distribution networks. This paper presents generalities a ...
The need for new generation systems has motivated the development of microgrids. This new concept may provide significant benefits such as losses reduction, high degree of efficiency and reliability to the transmission and distribution networks. This paper presents generalities a ...
The need for new generation systems has motivated the development of microgrids. This new concept may provide significant benefits such as losses reduction, high degree of efficiency and reliability to the transmission and distribution networks. This paper presents generalities a ...
In this chapter the most significant characteristics and functionalities of an energy management system (EMS) for microgrids are introduced. For this, the definitions of hierarchical control layers are considered. First, the main concepts and modules of the hierarchical control s ...
In this chapter the most significant characteristics and functionalities of an energy management system (EMS) for microgrids are introduced. For this, the definitions of hierarchical control layers are considered. First, the main concepts and modules of the hierarchical control s ...
In this chapter the most significant characteristics and functionalities of an energy management system (EMS) for microgrids are introduced. For this, the definitions of hierarchical control layers are considered. First, the main concepts and modules of the hierarchical control s ...
In this chapter the most significant characteristics and functionalities of an energy management system (EMS) for microgrids are introduced. For this, the definitions of hierarchical control layers are considered. First, the main concepts and modules of the hierarchical control s ...
In this chapter the most significant characteristics and functionalities of an energy management system (EMS) for microgrids are introduced. For this, the definitions of hierarchical control layers are considered. First, the main concepts and modules of the hierarchical control s ...
This chapter introduces concepts to understand, formulate, and solve a microgrid design and optimal sizing problem. First, basic concepts of energy potential assessment are introduced, in order to determine if a location is suitable for PV and wind generation systems implementati ...