Binary Neural Networks (BNNs) are compact and efficient by using binary weights instead of real-valued weights. Current BNNs use latent real-valued weights during training, where several training hyper-parameters are inherited from real-valued networks. The interpretation of seve
...
Binary Neural Networks (BNNs) are compact and efficient by using binary weights instead of real-valued weights. Current BNNs use latent real-valued weights during training, where several training hyper-parameters are inherited from real-valued networks. The interpretation of several of these hyperparameters is based on the magnitude of the real-valued weights. For BNNs, however, the magnitude of binary weights is not meaningful, and thus it is unclear what these hyperparameters actually do. One example is weight-decay, which aims to keep the magnitude of real-valued weights small. Other examples are latent weight initialization, the learning rate, and learning rate decay, which influence the magnitude of the real-valued weights. The magnitude is interpretable for real-valued weights, but loses its meaning for binary weights.
In this paper we offer a new interpretation of these magnitude-based hyperparameters based on higher-order gradient filtering during network optimization. Our analysis makes it possible to understand how magnitude-based hyperparameters influence the training of binary networks which allows for new optimization filters specifically designed for binary neural networks that are independent of their real-valued interpretation. Moreover, our improved understanding reduces the number of hyperparameters, which in turn eases the hyperparameter tuning effort which may lead to better hyperparameter values for improved accuracy.