Jv
J.H. van Schuppen
58 records found
1
Improving the small-signal stability of a stochastic power system
Algorithms and mathematical analysis
Tools and analysis for improving the small-signal stability of a stochastic power system by optimal power dispatch in each short time horizon, such as five-minute intervals, are provided in this paper. An objective function which characterizes the maximal exit probability from th
...
Serious fluctuations caused by disturbances may lead to instability of power systems. With the disturbance modeled by a Brownian motion process, the fluctuations are often described by the asymptotic variance at the invariant probability distribution of an associated Gaussian sto
...
The synchronization of power generators is an important condition for the proper functioning of a power system, in which the fluctuations in frequency and the phase angle differences between the generators are sufficiently small when subjected to stochastic disturbances. Serious
...
We aim to increase the ability of coupled phase oscillators to maintain synchronization when the system is affected by stochastic disturbances. We model the disturbances by Gaussian noise and use the mean first hitting time when the state hits the boundary of a secure domain, tha
...
The synchronization stability of a complex network system of coupled phase oscillators is discussed. In case the network is affected by disturbances, a stochastic linearized system of the coupled phase oscillators may be used to determine the fluctuations of phase differences in
...
Appendix
Mathematics
The reader finds in this short appendix concepts and results of various topics of mathematics. These topics are used in the body of the book but are not part of control theory. Topics covered are: algebra of set theory; a canonical form; algebraic structures including monoids, gr
...
A stochastic control problem is to determine a control law within a rather general set of control laws such that the closed-loop system meets prespecified control objectives. A stochastic control problem is motivated by control problem of engineering, economics, or other areas of
...
Optimal stochastic control problems with complete observations and on an infinite horizon are considered. Control theory for both the average cost and the discounted cost function is treated. The dynamic programming approach is formulated as a procedure to determine the value and
...
The filter problem is to derive an expression for the conditional distribution of the state of a stochastic system conditioned on the past outputs of the considered system and a recursion of the parameters of that conditional distribution. In this chapter the filter problem for a
...
Appendix
Matrix Equations
The Lyapunov equation and the algebraic Riccati equation are treated in depth. The Lyapunov equation arises as the equation for the asymptotic covariance matrix of the state of a stationary Gaussian system. The algebraic Riccati equation arises in the Kalman filter, in stochastic
...
The weak stochastic realization problem is to determine all stochastic systems whose output equals a considered output process in terms of its finite-dimensional distributions. Such a system is then said to be a stochastic realization of the considered output process. The problem
...
A stochastic system (without input) is a mathematical model of a dynamic phenomenon exhibiting uncertain signals. Such a system is mathematically characterized by the transition map from the current state to the joint probability distribution of the next state and the current out
...
Appendix
Control and System Theory of Deterministic Systems
Concepts and theorems of the system theory of deterministic linear systems are summarized. Controllability, observability, and a realization are formulated. Realization theory includes necessary and sufficient conditions for the existence of a realization, a characterization of t
...
Appendix
Stochastic Processes
Specialized topics on the theory of stochastic processes are described which are used in the body of this book. Defined are a filtration and stochastic processes relative to a filtration. Elementary martingale theory is discussed. Stopping times and a stochastic process indexed b
...
The concept of a stochastic control system is defined as a map from a tuple of the current state and the current input to the conditional probability distribution of the tuple of the next state and the current output. A Gaussian stochastic control system representation is defined
...
Optimal stochastic control problems are considered for a time-invariant stochastic control system with partial observations on an infinite horizon. Such problems can be solved by a dynamic programming method for partial observations. Both the average cost and the discounted cost
...
Appendix
Covariance Functions and Dissipative Systems
The concept of a dissipative system is defined for a deterministic linear system and is satisfied if there exists a storage function and a supply rate such that the dissipation inequality holds. It is proven that a deterministic linear system is dissipative if and only if a relat
...
In stochastic control with partial observations, the control law at any time can depend only on the past outputs and the past inputs of the stochastic control system. Neither is available to the control law in the current state nor the past states. Control theory for stochastic s
...
Stochastic realization problems are presented for a tuple of Gaussian random variables, for a tuple of σ -algebras, for a σ -algebra family, and for a finite stochastic system. The solution of the weak and of the strong stochastic realization of a tuple of Gaussian random variabl
...
Several examples of engineering control problems are described for which control of stochastic systems has been developed. Examples treated include control of a mooring tanker, control of freeway traffic flow, and control of shock absorbers. A list of additional control problems
...