Jv

J.H. van Schuppen

58 records found

Tools and analysis for improving the small-signal stability of a stochastic power system by optimal power dispatch in each short time horizon, such as five-minute intervals, are provided in this paper. An objective function which characterizes the maximal exit probability from th ...
Serious fluctuations caused by disturbances may lead to instability of power systems. With the disturbance modeled by a Brownian motion process, the fluctuations are often described by the asymptotic variance at the invariant probability distribution of an associated Gaussian sto ...
The synchronization of power generators is an important condition for the proper functioning of a power system, in which the fluctuations in frequency and the phase angle differences between the generators are sufficiently small when subjected to stochastic disturbances. Serious ...
We aim to increase the ability of coupled phase oscillators to maintain synchronization when the system is affected by stochastic disturbances. We model the disturbances by Gaussian noise and use the mean first hitting time when the state hits the boundary of a secure domain, tha ...
The synchronization stability of a complex network system of coupled phase oscillators is discussed. In case the network is affected by disturbances, a stochastic linearized system of the coupled phase oscillators may be used to determine the fluctuations of phase differences in ...
Several examples of engineering control problems are described for which control of stochastic systems has been developed. Examples treated include control of a mooring tanker, control of freeway traffic flow, and control of shock absorbers. A list of additional control problems ...
The weak stochastic realization problem is to determine all stochastic systems whose output equals a considered output process in terms of its finite-dimensional distributions. Such a system is then said to be a stochastic realization of the considered output process. The problem ...

Appendix

Positive Matrices

This chapter concerns positive matrices which are matrices with elements of the positive real numbers. The motivations for the inclusion of the algebraic structure of positive matrices are the problems (1) of stability of the system of probability measures of the Markov process o ...
Optimal stochastic control problems with complete observations and on an infinite horizon are considered. Control theory for both the average cost and the discounted cost function is treated. The dynamic programming approach is formulated as a procedure to determine the value and ...

Appendix

Control and System Theory of Deterministic Systems

Concepts and theorems of the system theory of deterministic linear systems are summarized. Controllability, observability, and a realization are formulated. Realization theory includes necessary and sufficient conditions for the existence of a realization, a characterization of t ...
Stochastic realization problems are presented for a tuple of Gaussian random variables, for a tuple of σ -algebras, for a σ -algebra family, and for a finite stochastic system. The solution of the weak and of the strong stochastic realization of a tuple of Gaussian random variabl ...

Appendix

Mathematics

The reader finds in this short appendix concepts and results of various topics of mathematics. These topics are used in the body of the book but are not part of control theory. Topics covered are: algebra of set theory; a canonical form; algebraic structures including monoids, gr ...

Appendix

State-Variance Matrices

Concepts and results of the geometric structure of the set of state-variance matrices of a time-invariant Gaussian system are provided in this chapter. With respect to a condition, the set is convex with a minimal and a maximal element. In case the noise variance matrix satisfies ...
The study of control of stochastic systems requires knowledge of probability and of stochastic processes. Probability is summarized in this chapter in a way which is sufficient for studying the control and system theory of the subsequent chapters. Additional concepts and results ...
In stochastic control with partial observations, the control law at any time can depend only on the past outputs and the past inputs of the stochastic control system. Neither is available to the control law in the current state nor the past states. Control theory for stochastic s ...
Several sets of stochastic systems are defined in this chapter. The sets are selected based on the sets in which the outputs take values. Conditions are provided for the selection of the output-state conditional distribution function and for the selection of the conditional distr ...
A stochastic control problem is to determine a control law within a rather general set of control laws such that the closed-loop system meets prespecified control objectives. A stochastic control problem is motivated by control problem of engineering, economics, or other areas of ...

Appendix

Matrix Equations

The Lyapunov equation and the algebraic Riccati equation are treated in depth. The Lyapunov equation arises as the equation for the asymptotic covariance matrix of the state of a stationary Gaussian system. The algebraic Riccati equation arises in the Kalman filter, in stochastic ...
Optimal stochastic control problems are formulated for a stochastic control system with complete observations on a finite horizon. Dynamic programming yields necessary and sufficient conditions for optimality rather than local optimality conditions as provided by methods based on ...
Optimal stochastic control problems are considered for a time-invariant stochastic control system with partial observations on an infinite horizon. Such problems can be solved by a dynamic programming method for partial observations. Both the average cost and the discounted cost ...