Jv
J.H. van Schuppen
58 records found
1
Improving the small-signal stability of a stochastic power system
Algorithms and mathematical analysis
Tools and analysis for improving the small-signal stability of a stochastic power system by optimal power dispatch in each short time horizon, such as five-minute intervals, are provided in this paper. An objective function which characterizes the maximal exit probability from th
...
Serious fluctuations caused by disturbances may lead to instability of power systems. With the disturbance modeled by a Brownian motion process, the fluctuations are often described by the asymptotic variance at the invariant probability distribution of an associated Gaussian sto
...
We aim to increase the ability of coupled phase oscillators to maintain synchronization when the system is affected by stochastic disturbances. We model the disturbances by Gaussian noise and use the mean first hitting time when the state hits the boundary of a secure domain, tha
...
The synchronization of power generators is an important condition for the proper functioning of a power system, in which the fluctuations in frequency and the phase angle differences between the generators are sufficiently small when subjected to stochastic disturbances. Serious
...
The synchronization stability of a complex network system of coupled phase oscillators is discussed. In case the network is affected by disturbances, a stochastic linearized system of the coupled phase oscillators may be used to determine the fluctuations of phase differences in
...
Elementary concepts and results of the theory of stochastic processes are summarized in this chapter. Concepts presented include a stochastic process, equivalent processes, a Gaussian process, stationarity, time-reversibility, and a Markov process. It is shown how to go from the
...
Appendix
Mathematics
The reader finds in this short appendix concepts and results of various topics of mathematics. These topics are used in the body of the book but are not part of control theory. Topics covered are: algebra of set theory; a canonical form; algebraic structures including monoids, gr
...
Optimal stochastic control problems with complete observations and on an infinite horizon are considered. Control theory for both the average cost and the discounted cost function is treated. The dynamic programming approach is formulated as a procedure to determine the value and
...
Appendix
Control and System Theory of Deterministic Systems
Concepts and theorems of the system theory of deterministic linear systems are summarized. Controllability, observability, and a realization are formulated. Realization theory includes necessary and sufficient conditions for the existence of a realization, a characterization of t
...
Optimal stochastic control problems are considered for a time-invariant stochastic control system with partial observations on an infinite horizon. Such problems can be solved by a dynamic programming method for partial observations. Both the average cost and the discounted cost
...
Appendix
Matrix Equations
The Lyapunov equation and the algebraic Riccati equation are treated in depth. The Lyapunov equation arises as the equation for the asymptotic covariance matrix of the state of a stationary Gaussian system. The algebraic Riccati equation arises in the Kalman filter, in stochastic
...
The weak stochastic realization problem is to determine all stochastic systems whose output equals a considered output process in terms of its finite-dimensional distributions. Such a system is then said to be a stochastic realization of the considered output process. The problem
...
Filter problems are formulated for stochastic systems which are not Gaussian systems. Both the estimation problem, the sequential estimation problem, and the filter problem are treated. A sufficient condition for the existence of a finite-dimensional filter system is formulated.
...
Appendix
State-Variance Matrices
Concepts and results of the geometric structure of the set of state-variance matrices of a time-invariant Gaussian system are provided in this chapter. With respect to a condition, the set is convex with a minimal and a maximal element. In case the noise variance matrix satisfies
...
Appendix
Covariance Functions and Dissipative Systems
The concept of a dissipative system is defined for a deterministic linear system and is satisfied if there exists a storage function and a supply rate such that the dissipation inequality holds. It is proven that a deterministic linear system is dissipative if and only if a relat
...
In stochastic control with partial observations, the control law at any time can depend only on the past outputs and the past inputs of the stochastic control system. Neither is available to the control law in the current state nor the past states. Control theory for stochastic s
...
Several examples of engineering control problems are described for which control of stochastic systems has been developed. Examples treated include control of a mooring tanker, control of freeway traffic flow, and control of shock absorbers. A list of additional control problems
...
Optimal stochastic control problems are formulated for a stochastic control system with complete observations on a finite horizon. Dynamic programming yields necessary and sufficient conditions for optimality rather than local optimality conditions as provided by methods based on
...
This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of cont
...
The filter problem is to derive an expression for the conditional distribution of the state of a stochastic system conditioned on the past outputs of the considered system and a recursion of the parameters of that conditional distribution. In this chapter the filter problem for a
...