With the use of simulation models, predicting and optimising the correct dynamic behaviour and parameters of a propulsion system of a ship can be performed cheap and safe. However, capturing the right dynamic behaviour is very difficult. Besides, building simulation models and de
...
With the use of simulation models, predicting and optimising the correct dynamic behaviour and parameters of a propulsion system of a ship can be performed cheap and safe. However, capturing the right dynamic behaviour is very difficult. Besides, building simulation models and determining the correct parameters is a time consuming process. With system identification, in- and output data of a controlled test are used to identify the parameters of the created grey box model structure, which reflects the underlying physical laws. A so called "fingerprint" is generated that imitates the behaviour of the system. The first attempt of system identification of a full-scale propulsion system showed promising results but asked for further research. This thesis further investigates if system identification is a suitable method to obtain the dynamic model- behaviour and parameters of a full-scale propulsion system in a short time, with the use of controlled tests.