Mv

Marjolein M. van der Krogt

Authored

19 records found

In neurological diseases, muscles often become hyper-resistant to stretch due to hyperreflexia, an exaggerated stretch reflex response that is considered to primarily depend on the muscle's stretch velocity. However, there is still limited understanding of how different biomechan ...

The Amsterdam Foot Model

A clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics

Background: Foot and ankle joint kinematics are measured during clinical gait analyses with marker-based multi-segment foot models. To improve on existing models, measurement errors due to soft tissue artifacts (STAs) and marker misplacements should be reduced. Therefore, the aim ...

Accurate and reliable measurement of the severity of dystonia is essential for the indication, evaluation, monitoring and fine‐tuning of treatments. Assessment of dystonia in children and adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evalu ...

Towards automated video-based assessment of dystonia in dyskinetic cerebral palsy

A novel approach using markerless motion tracking and machine learning

Introduction: Video-based clinical rating plays an important role in assessing dystonia and monitoring the effect of treatment in dyskinetic cerebral palsy (CP). However, evaluation by clinicians is time-consuming, and the quality of rating is dependent on experience. The aim ...

Computed tomography (CT) imaging can be used to determine bone pose, sometimes combined with skin-mounted markers. For this specific application, a lower radiation dose than the conventional clinical dose might suffice. This study aims to determine how lowering the radiation dose ...

To maximize effects of dorsal leaf ankle foot orthoses (AFOs) on gait in people with bilateral plantarflexor weakness, the AFO properties should be matched to the individual. However, how AFO properties interact regarding their effect on gait function is unknown. We studied th ...

Background: In this systematic review we investigate which instrumented measurements are available to assess motor impairments, related activity limitations and participation restrictions in children and young adults with dyskinetic cerebral palsy. We aim to classify these ins ...

Background: The stiffness of a dorsal leaf AFO that minimizes walking energy cost in people with plantarflexor weakness varies between individuals. Using predictive simulations, we studied the effects of plantarflexor weakness, passive plantarflexor stiffness, body mass, and w ...

How normal is normal

Consequences of stride to stride variability, treadmill walking and age when using normative paediatric gait data

With the rise of biofeedback in gait training in cerebral palsy there is a need for real-time measurements of gait kinematics. The Human Body Model (HBM) is a recently developed model, optimized for the real-time computing of kinematics. This study evaluated differences between H ...

Neuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estim ...

Background: Estimating muscle-tendon complex (MTC) lengths is important for planning of soft tissue surgery and evaluating outcomes, e.g. in children with cerebral palsy (CP). Conventional musculoskeletal models often represent the foot as one rigid segment, called a mono-segment ...
Neuro-musculoskeletal modelling can provide insight into the aberrant muscle function during walking in those suffering cerebral palsy (CP). However, such modelling employs optimization to estimate muscle activation that may not account for disturbed motor control and muscle weak ...

Accurate predictive simulations of human gait rely on optimisation criteria to solve the system's redundancy. Defining such criteria is challenging, as the objectives driving the optimization of human gait are unclear. This study evaluated how minimising various physiologicall ...

Understanding the effect of individual marker misplacements is important to improve the repeatability and aid to the interpretation of multi-segment foot models like the Oxford and Rizzoli Foot Models (OFM, RFM). Therefore, this study aimed to quantify the effect of controlled an ...
Background: Patients with knee osteoarthritis can adapt their gait to unload the most painful knee joint in order to try to reduce pain and improve physical function. However, these gait adaptations can cause higher loads on the contralateral joints. The aim of the study was to i ...

Movement of skin markers with respect to their underlying bone (i.e. soft tissue artifacts (STAs)) might corrupt the accuracy of marker-based movement analyses. This study aims to quantify STAs in 3D for foot markers and their effect on multi-segment foot kinematics as calcula ...

Background: Children with cerebral palsy often show deviating calf muscle activation patterns during gait, with excess activation during early stance and insufficient activation during push-off. Research question: Can children with cerebral palsy improve their calf muscle acti ...

Background: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understo ...

Contributed

1 records found

Children with cerebral palsy (CP) commonly have bony deformities of the foot, which lead to pain and gait problems. One of the causes of such a deformity is an imbalance in muscle forces around the foot. In turn, the bony deformity can also alter muscle function, due to, for exam ...