Human cohesin extrudes DNA into loops and is positioned along the genome by stalling at the human CCCTC-binding factor (CTCF) upon encountering its N-terminal region (NTR). The mechanism underlying this stalling, however, is unresolved. Using single-molecule assays that monitor D
...
Human cohesin extrudes DNA into loops and is positioned along the genome by stalling at the human CCCTC-binding factor (CTCF) upon encountering its N-terminal region (NTR). The mechanism underlying this stalling, however, is unresolved. Using single-molecule assays that monitor DNA loop extrusion (LE) in the presence of NTR fragments, we identify two amino acid motifs, YDF and KTYQR, which hinder LE. KTYQR is found to completely block LE activity, while YDF hinders cohesin from completing LE step cycles and converts cohesin into a unidirectional extruder by strengthening the affinity of STAG1 to DNA. We thus identify two distinct NTR motifs that stall LE via different yet synergistic mechanisms, highlighting the multifaceted ways employed by CTCF to modulate LE to shape and regulate genomes.