MR

Authored

14 records found

Tidally heated exomoons around Ïμ Eridani b

Observability and prospects for characterization

Context. Exomoons are expected to orbit gas giant exoplanets just as moons orbit Solar System planets. Tidal heating is present in Solar System satellites, and it can heat up their interior, depending on their orbital and interior properties. Aims. We aim to identify a tidally he ...
In the last fifty years, the spacemissions Voyager, Galileo, Cassini-Huygens and Juno explored the moons of the outer Solar System and revealed a wide spectrum of worlds. While some of these worlds are barren, others are among the most geologically active of the Solar System. The ...
Enceladus, with its subsurface ocean, is amongst the top priority targets in the search for life beyond Earth. Following on discoveries from the Cassini mission that Enceladus possesses a global subsurface ocean containing salt and organic compounds, there are many unconstrained ...
The inferred density of Enceladus' core, together with evidence of hydrothermal activity within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed as the main source of Enceladus' geological activity. However, the tidal respo ...
Some of the moons of the outer solar system harbour subsurface liquid oceans. Tidal dissipation plays an important role in preventing these oceans from freezing. In the past, most studies considered only tidal dissipation in the solid layers of these bodies (rock and ice). Recent ...
Tidal heating can play an important role in the formation and evolution of subsurface oceans of outer-planet moons. Up until now tidal heating has only been studied in subsurface oceans of spatially uniform thickness. We develop a numerical model to consider oceans of spatially v ...
Tidal heating can play an important role in the formation and evolution of subsurface oceans of outer-planet moons. Up until now tidal heating has only been studied in subsurface oceans of spatially uniform thickness. We develop a numerical model to consider oceans of spatially v ...
A growing number of satellites in the outer solar system likely have global oceans beneath their outer icy shells. While the presence of liquid water makes these ocean worlds compelling astrobiological targets, the exchange of heat and materials between the deep interior and the ...
A growing number of satellites in the outer solar system likely have global oceans beneath their outer icy shells. While the presence of liquid water makes these ocean worlds compelling astrobiological targets, the exchange of heat and materials between the deep interior and the ...
A growing number of satellites in the outer solar system likely have global oceans beneath their outer icy shells. While the presence of liquid water makes these ocean worlds compelling astrobiological targets, the exchange of heat and materials between the deep interior and the ...
Thousands of exoplanets have been discovered; however, the detection of exomoons remains elusive. Tidally heated exomoons have been proposed as candidate targets for observation; vigorous tidal dissipation can raise the moon's surface temperature, making direct imaging possible, ...
The Barents Sea is situated on a continental margin and was home to a large ice sheet at the Last Glacial Maximum. Studying the solid Earth response to the removal of this ice sheet (glacial isostatic adjustment; GIA) can give insight into the subsurface rheology of this region. ...
Body tides reveal information about planetary interiors and affect their evolution. Most models to compute body tides rely on the assumption of a spherically symmetric interior. However, several processes can lead to lateral variations of interior properties. We present a new spe ...
The marine portion of the West Antarctic Ice Sheet (WAIS) in the Amundsen Sea Embayment (ASE) accounts for one-fourth of the cryospheric contribution to global sea-level rise and is vulnerable to catastrophic collapse. The bedrock response to ice mass loss, glacial isostatic adju ...

Contributed

6 records found

How Much Ice Could an Icy Io Have Lost Through Tidal Heating?

How Much Ice Could an Icy Io Have Lost Through Tidal Heating?

Of the four Galilean satellites the only one without ice is Io. While it is possible that Io never contained any ice the starting point of this research work is an icy Io. As present-day Io does not contain any ice, icy Io must have lost its ice through some sort of ice loss mech ...
Saturn’s moon Enceladus harbours a global subsurface ocean beneath its icy crust. Tidal dissipation within the moon’s core generates a substantial amount of heat which leads to ocean convection. Observations of the moon indicate ocean thickness variations of up to 20 km from equa ...