DC

Daan Crommelin

Authored

7 records found

Here, we describe our efforts to create a multi-scale and multi-physics framework that can be retargeted across different disciplines. Currently we have implemented our approach in the astrophysical domain, for which we developed AMUSE (github.com/amusecode/amuse ), and generaliz ...
In this study, we investigate uncertainties in a large eddy simulation of the atmosphere, employing modern uncertainty quantification methods that have hardly been used yet in this context. When analysing the uncertainty of model results, one can distinguish between uncertainty r ...
We present a Python interface for the Dutch Atmospheric Large Eddy Simulation (DALES), an existing Fortran code for high-resolution, turbulence-resolving simulation of atmospheric physics. The interface is based on an infrastructure for remote and parallel function calls and make ...
As a computationally attractive alternative for global large eddy simulations (LESs), we investigate the possibility of using comprehensive three-dimensional LESs as a superparameterization that can replace all traditional parameterizations of atmospheric processes that are curre ...
In order to eliminate climate uncertainty w.r.t. cloud and convection parametrizations, superpramaterization (SP) [1] has emerged as one of the possible ways forward. We have implemented (regional) superparametrization of the ECMWF weather model OpenIFS [2] by cloud-resolving, th ...
In atmospheric modeling, superparameterization (SP) has gained popularity as a technique to improve cloud and convection representations in large-scale models by coupling them locally to cloud-resolving models. We show how the different representations of cloud water in the local ...