FV
F.J. Vermolen
199 records found
1
...
Background: Burn injuries present a significant global health challenge. Among the most severe long-term consequences are contractures, which can lead to functional impairments and disfigurement. Understanding and predicting the evolution of post-burn wounds is essential for deve
...
In this paper a Spatial Markov Chain Cellular Automata model for the spread of viruses is proposed. The model is based on a graph with connected nodes, where the nodes represent individuals and the connections between the nodes denote the relations between humans. In this way, a
...
Cancer cell migration between different body parts is the driving force behind cancer metastasis, which causes mortality of patients. Migration of cancer cells often proceeds by penetration through narrow cavities in possibly stiff tissues. In our previous work [12], a model for
...
Severe burn injuries often lead to skin contraction, leading to stresses in and around the damaged skin region. If this contraction leads to impaired joint mobility, one speaks of contracture. To optimize treatment, a mathematical model, that is based on finite element methods, i
...
Partial differential equations are paramount in mathematical modelling with applications in engineering and science. The book starts with a crash course on partial differential equations in order to familiarize the reader with fundamental properties such as existence, uniqueness
...
In this book we discuss several numerical methods for solving ordinary differential equations. We emphasize the aspects that play an important role in practical problems. We confine ourselves to ordinary differential equations with the exception of the last chapter in which we di
...
We consider the stability analysis of a two-dimensional model for post-burn contraction. The model is based on morphoelasticity for permanent deformations and combined with a chemical-biological model that incorporates cellular densities, collagen density, and the concentration o
...
This is a book about numerically solving partial differential equations occurring in technical and physical contexts and the authors have set themselves a more ambitious target than to just talk about the numerics. Their aim is to show the place of numerical solutions in the gene
...
The discretisation of the Laplacian results into the well-known Laplace matrix. In the case of a one dimensional problem, an explicit formula for its inverse is derived on the basis of fundamental solutions (Green’s functions) for general boundary conditions. For a linear reactio
...
Health care is undergoing a profound technological and digital transformation and has become increasingly complex. It is important for burns professionals and researchers to adapt to these developments which may require new ways of thinking and subsequent new strategies. As Einst
...
Scar formation from the perspective of complexity science
A new look at the biological system as a whole
A burn wound is a complex systemic disease at multiple levels. Current knowledge of scar formation after burn injury has come from traditional biological and clinical studies. These are normally focused on just a small part of the entire process, which has limited our ability to
...
Plastic (permanent) deformations were earlier, modeled by a phenomenological model in Peng and Vermolen (Biomech Model Mechanobiol 19(6):2525–2551, 2020). In this manusctipt, we consider a more physics-based formulation that is based on morphoelasticity. We firstly introduce the
...
Burn injuries can decrease the quality of life of a patient tremendously, because of esthetic reasons and because of contractions that result from them. In severe case, skin contraction takes place at such a large extent that joint mobility of a patient is significantly inhibited
...
Deep dermal wounds induce skin contraction as a result of the traction forcing exerted by (myo)fibroblasts on their immediate environment. These (myo)fibroblasts are skin cells that are responsible for the regeneration of collagen that is necessary for the integrity of skin We co
...
Numerical methods to compute stresses and displacements from cellular forces
Application to the contraction of tissue
We consider a mathematical model for skin contraction, which is based on solving a momentum balance under the assumptions of isotropy, homogeneity, Hooke's Law, infinitesimal strain theory and point forces exerted by cells. However, point forces, described by Dirac Delta distribu
...
Skin contraction is an important biophysical process that takes place during and after recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts which exert larger pulling forces and produce larger amo
...
We consider a two-dimensional biomorphoelastic model describing post-burn scar contraction. This model describes skin displacement and the development of the effective Eulerian strain in the tissue. Besides these mechanical components, signaling molecules, fibroblasts, myofibrobl
...
To deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituen
...
Skin contraction during wound healing is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts) that exert pulling forces on the surrounding extracellular matrix (ECM). Modelling is done in multiple scales: agent-based modelling on the microscal
...