Authored

12 records found

We consider a mathematical model for skin contraction, which is based on solving a momentum balance under the assumptions of isotropy, homogeneity, Hooke's Law, infinitesimal strain theory and point forces exerted by cells. However, point forces, described by Dirac Delta distribu ...
Plastic (permanent) deformations were earlier, modeled by a phenomenological model in Peng and Vermolen (Biomech Model Mechanobiol 19(6):2525–2551, 2020). In this manusctipt, we consider a more physics-based formulation that is based on morphoelasticity. We firstly introduce the ...
Deep dermal wounds induce skin contraction as a result of the traction forcing exerted by (myo)fibroblasts on their immediate environment. These (myo)fibroblasts are skin cells that are responsible for the regeneration of collagen that is necessary for the integrity of skin We co ...
The phenomenological model for cell shape deformation and cell migration Chen (BMM 17:1429–1450, 2018), Vermolen and Gefen (BMM 12:301–323, 2012), is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell different ...
Skin contraction is an important biophysical process that takes place during and after recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts which exert larger pulling forces and produce larger amo ...
Burns and other skin traumas occur at various intensities regarding the depth and area of the skin, as well as the involvement of the different skin layers. Worldwide, an estimated six million patients need hospitalisation for burns annually. Furthermore, most severe burn injurie ...
In this paper, we extend the model of wound healing by Boon et al. (J Biomech 49(8):1388–1401, 2016). In addition to explaining the model explicitly regarding every component, namely cells, signalling molecules and tissue bundles, we categorized fibroblasts as regular fibroblasts ...
Deep tissue injury is often followed by contraction of the scar tissue. This contraction occurs as a result of pulling forces that are exerted by fibroblasts (skin cells). We consider a cell-based approach to simulate the contraction behavior of the skin. Since the cells are much ...
We consider several mathematical issues regarding models that simulate forces exerted by cells. Since the size of cells is much smaller than the size of the domain of computation, one often considers point forces, modelled by Dirac Delta distributions on boundary segments of ce ...
We consider a cell-based approach in which the balance of momentum is used to predict the impact of cellular forces on the surrounding tissue. To this extent, the elasticity equation and Dirac Delta distributions are combined. In order to avoid the singularity caused by Dirac Del ...