Authored

20 records found

In situ strain evolution during laser welding has been measured by means of digital image correlation to assess the susceptibility of an advanced high strength automotive steel to solidification cracking. A novel method realised using auxiliary illumination and optical narrow ban ...
Hot cracking during laser welding of advanced high-strength steels is reported to be a serious problem by automotive manufacturers. In this work, hot cracking susceptibilities of transformation-induced plasticity (TRIP) and dual-phase (DP) steels are studied based on a multi-scal ...
Susceptibility to weld solidification cracking in transformation-induced plasticity steel sheets was studied using a modified standard hot cracking test used in the automotive industry. To vary the amount of self-restraint, bead-on-plate laser welding was carried out on a single- ...
Hot cracking during laser welding of Transformation Induce Plasticity (TRIP) steel at the edges of steel flanges can be a problem. In this study, modified hot cracking tests were performed by welding on a single-side clamped specimen at various distances from the free edge, while ...
Advanced high strength steels (AHSS) are increasingly used in automotive industry; thousands of resistance spot welds are applied to car body-in-white. High alloying levels of AHSS result in lower weldability. Residual stresses play an essential role on the f ...
Advanced high-strength steels (AHSS), which are increasingly used in the automotive industry, meet many functional requirements such as high strength and crash resistance. Some of these steels contain high amounts of alloying elements, which are required to achieve the necessary ...
In situ high-temperature laser scanning confocal microscopy is applied to study solidification cracking in a TRIP steel. Solidification cracking was observed in the interdendritic region during the last stage of solidification. Atom probe tomography revealed notable enrichment of ...