BH
B. Huang
6 records found
1
The Fe2P type Mn–Fe–P–Si alloys exhibit a giant magneto-elastic first-order transition, but the large hysteresis limits their performance. Crystal structure evolution and magnetocaloric performance were investigated by varying the Mn and Fe contents at a constant V sub
...
In this PhD thesis the focus is centered on the development of magnetocaloric heat pumps and thermomagnetic motors. To maximize the performance of these systems, the available knowledge from system engineering, material shaping techniques and innovative device approaches are comb
...
Large thermal hysteresis in the (Mn,Fe)2(P,Si) system hinders an efficient heat exchange and thus limits the magnetocaloric applications. Substitution of manganese by vanadium in the Mn1-x1Vx1Fe0.95P0.593Si0.33B0.077 and Mn1-x2Vx2Fe0.95P0.563Si0.36B0.077 compounds enable a signif
...
Magnetocaloric effect in the (Mn,Fe)2(P,Si) system
From bulk to nano
In the field of nanoscale magnetocaloric materials, novel concepts like micro-refrigerators, thermal switches, microfluidic pumps, energy harvesting devices and biomedical applications have been proposed. However, reports on nanoscale (Mn,Fe)2(P,Si)-based materials, wh
...
Ni-Mn-X (X = In, Sn, and Sb) based Heusler alloys show a strong potential for magnetic refrigeration owing to their large magnetocaloric effect (MCE) associated with first-order magnetostructural transition. However, the irreversibility of the MCE under low field change of 0–1 T
...
Giant reversible magnetocaloric effect in MnNiGe-based materials
Minimizing thermal hysteresis via crystallographic compatibility modulation
MnMX (M = Co or Ni, X = Si or Ge) alloys with strong magnetostructural coupling exhibit giant magnetic entropy change and are currently extensively studied. However, large thermal hysteresis results in serious irreversibility of the magnetocaloric effect in this well-known system
...