BF
B.F. Ferreira de Brito
4 records found
1
Mobile robots that operate in human environments require the ability to safely navigate among humans and other obstacles. Existing approaches use Deep Reinforcement Learning (DRL) to obtain safe robot behavior in such environments, but do not ensure collision avoidance or traject
...
Social Navigation is the task of robot motion planning in an environment shared with humans.This is an especially hard sub-problem of motion planning because the planner has to dealwith a dynamic, continuous and unpredictable environment. We present a local motionplanner, namely
...
Deep Reinforcement Learning (DRL) enables us to design controllers for complex tasks with a deep learning approach. It allows us to design controllers that are otherwise cumbersome to design with conventional control methodologies. Often, an objective for RL is binary in nature.
...
Motion planning for Autonomous Ground Vehicles (AGVs) in dynamic environments is an extensively studied and complex problem. State of the art methods provide approximate solutions that make conservative assumptions to provide safety and feasibility. We aim to outperform current m
...