Characterizing the Composition of Sand and Mud Suspensions in Coastal and Estuarine Environments Using Combined Optical and Acoustic Measurements

Journal Article (2021)
Author(s)

Stuart Pearson (Deltares, TU Delft - Environmental Fluid Mechanics, TU Delft - Coastal Engineering)

Romaric Verney (Institut Francais de Recherche pour l’Exploitation de la Mer)

BC Van Prooijen (TU Delft - Environmental Fluid Mechanics)

Duc Tran (Institut Francais de Recherche pour l’Exploitation de la Mer)

H.C.M. Hendriks (Deltares, TU Delft - Environmental Fluid Mechanics)

Matthias Jacquet (Institut Francais de Recherche pour l’Exploitation de la Mer)

Z. B. Wang (TU Delft - Coastal Engineering, Deltares)

Research Group
Coastal Engineering
Copyright
© 2021 S.G. Pearson, Romaric Verney, Bram van Prooijen, Duc Tran, H.C.M. Hendriks, Matthias Jacquet, Zhengbing Wang
DOI related publication
https://doi.org/10.1029/2021JC017354
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 S.G. Pearson, Romaric Verney, Bram van Prooijen, Duc Tran, H.C.M. Hendriks, Matthias Jacquet, Zhengbing Wang
Related content
Research Group
Coastal Engineering
Issue number
7
Volume number
126
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Quantifying and characterizing suspended sediment is essential to successful monitoring and management of estuaries and coastal environments. To quantify suspended sediment, optical and acoustic backscatter instruments are often used. Optical backscatter systems are more sensitive to mud particles (<63 μm) and flocs, whereas acoustic backscatter systems are more responsive to larger sand grains (>63 μm). It is thus challenging to estimate the relative proportion of sand or mud in environments where both types of sediment are present. The suspended sediment concentration measured by these devices depends on the composition of that sediment, thus it is also difficult to confidently measure concentration with a single instrument when the composition varies and extensive calibration is not possible. The objective of this paper is to develop a methodology for characterizing the relative proportions of sand and mud in mixed sediment suspensions by comparing the response of simultaneous optical and acoustic measurements. We derive a sediment composition index (SCI) that is used to directly predict the relative fraction of sand in suspension. Here, we verify the theoretical response of these optical and acoustic instruments in laboratory experiments and successfully apply this approach to field measurements from Ameland ebb-tidal delta (the Netherlands). Increasing sand content decreases SCI, which was verified in laboratory experiments. A reduction in SCI appears during more energetic conditions when sand resuspension is expected. Conversely, the SCI increases in calmer conditions when sand settles out, leaving behind mud. This approach provides crucial knowledge of suspended sediment composition in mixed sediment environments.