Ant Colony Optimization for DSM's Flexible Job Shop Problem

Bachelor Thesis (2022)
Author(s)

T. Numan (TU Delft - Electrical Engineering, Mathematics and Computer Science)

Contributor(s)

K.C. van den Houten – Mentor (TU Delft - Algorithmics)

Mathijs M. De Weerdt – Mentor (TU Delft - Algorithmics)

Burcu Kulahcioglu Ozkan – Graduation committee member (TU Delft - Software Engineering)

Faculty
Electrical Engineering, Mathematics and Computer Science
Copyright
© 2022 Tim Numan
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Tim Numan
Graduation Date
24-06-2022
Awarding Institution
Delft University of Technology
Project
['CSE3000 Research Project']
Programme
['Computer Science and Engineering']
Faculty
Electrical Engineering, Mathematics and Computer Science
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This papers examines an ant colony optimization approach for solving a specific variant of the Flexible Job Shop Problem faced by the Dutch chemistry company DSM. Jobs consisting of operations on a specific enzyme need to be scheduled as efficiently as possible on groups of available machines. The most interesting requirement upon the general FJSP are the sequence-dependent cleaning times a machine needs when it processes two different enzyme types consecutively. This can all be intuitively represented using a weighted disjunctive graph, which ACO uses as its input. The algorithm consists of a number of epochs for which multiple ants create a feasible schedule one operation at the time. Scheduling choices are made using pheromones and an heuristic visibility function based on earliest starting times. Pheromone amounts are updated using both a negative local updating rule and a positive global update for the best ant per epoch. Two hyperparameters, the initial pheromone amount τ0 and the cutting exploration parameter q0 are experimentally evaluated. Varying τ0 does not consistently impact the solution quality nor runtime, while the higher the value of q0, the better both measures. Performance evaluation of ACO is done using a provided MILP solver as baseline and the makespan as objective function for a range of different time limits. For the tested instances, ACO shows to significantly outperform MILP, finding good solutions exceptionally fast. Based on this, ACO is an efficient method to solve the production scheduling problem of DSM.

Files

Research_Project_22_.pdf
(pdf | 0.31 Mb)
License info not available