Preallocation and Planning under Stochastic Resource Constraints

Conference Paper (2018)
Author(s)

Frits de Nijs (TU Delft - Algorithmics)

Matthijs Spaan (TU Delft - Algorithmics)

Mathijs de Weerdt (TU Delft - Algorithmics)

Research Group
Algorithmics
Copyright
© 2018 F. de Nijs, M.T.J. Spaan, M.M. de Weerdt
More Info
expand_more
Publication Year
2018
Language
English
Copyright
© 2018 F. de Nijs, M.T.J. Spaan, M.M. de Weerdt
Research Group
Algorithmics
Pages (from-to)
4662-4669
ISBN (print)
978-1-57735-800-8
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Resource constraints frequently complicate multi-agent planning problems. Existing algorithms for resource-constrained, multi-agent planning problems rely on the assumption that the constraints are deterministic. However, frequently resource constraints are themselves subject to uncertainty from external influences. Uncertainty about constraints is especially challenging when agents must execute in an environment where communication is unreliable, making on-line coordination difficult. In those cases, it is a significant challenge to find coordinated allocations at plan time depending on availability at run time. To address these limitations, we propose to extend algorithms for constrained multi-agent planning problems to handle stochastic resource constraints. We show how to factorize resource limit uncertainty and use this to develop novel algorithms to plan policies for stochastic constraints. We evaluate the algorithms on a search-and-rescue problem and on a power-constrained planning domain where the resource constraints are decided by nature. We show that plans taking into account all potential realizations of the constraint obtain significantly better utility than planning for the expectation, while causing fewer constraint violations.

Files

15992.pdf
(pdf | 0.719 Mb)
- Embargo expired in 01-07-2019
License info not available