Ultrathin complex oxide nanomechanical resonators

Journal Article (2020)
Author(s)

Dejan Davidovikj (Kavli institute of nanoscience Delft, TU Delft - QN/van der Zant Lab, TU Delft - QN/Steeneken Lab)

Dirk J. Groenendijk (Kavli institute of nanoscience Delft, TU Delft - QN/Caviglia Lab)

A. M.R.V.L. Monteiro (Kavli institute of nanoscience Delft)

A. Dijkhoff (Kavli institute of nanoscience Delft, Student TU Delft)

D. Afanasiev (TU Delft - QN/Caviglia Lab, Kavli institute of nanoscience Delft)

M. Siskins (TU Delft - QN/Steeneken Lab, Kavli institute of nanoscience Delft)

H.S.J. van der Zant (TU Delft - QN/van der Zant Lab, Kavli institute of nanoscience Delft)

A. Caviglia (TU Delft - QN/Caviglia Lab, Kavli institute of nanoscience Delft)

P.G. Steeneken (TU Delft - Dynamics of Micro and Nano Systems, Kavli institute of nanoscience Delft, TU Delft - QN/Steeneken Lab)

More authors (External organisation)

Research Group
QN/van der Zant Lab
Copyright
© 2020 D. Davidovikj, D.J. Groenendijk, A. M.R.V.L. Monteiro, A. Dijkhoff, D. Afanasiev, M. Siskins, H.S.J. van der Zant, A. Caviglia, P.G. Steeneken, More Authors
DOI related publication
https://doi.org/10.1038/s42005-020-00433-y
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 D. Davidovikj, D.J. Groenendijk, A. M.R.V.L. Monteiro, A. Dijkhoff, D. Afanasiev, M. Siskins, H.S.J. van der Zant, A. Caviglia, P.G. Steeneken, More Authors
Research Group
QN/van der Zant Lab
Issue number
1
Volume number
3
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Complex oxide thin films and heterostructures exhibit a variety of electronic phases, often controlled by the mechanical coupling between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the study of their properties in the absence of interface effects. In this work, we use this technique to create nanomechanical resonators made out of SrTiO3 and SrRuO3. Using laser interferometry, we successfully actuate and measure the motion of the nanodrum resonators. By measuring the temperature-dependent mechanical response of the SrTiO3 resonators, we observe signatures of a structural phase transition, which affects both the strain and mechanical dissipation in the resonators. Here, we demonstrate the feasibility of integrating ultrathin complex oxide membranes for realizing nanoelectromechanical systems on arbitrary substrates and present a novel method of detecting structural phase transitions in these exotic materials.