TensorConvolutionPlus

A python package for distribution system flexibility area estimation

Journal Article (2025)
Author(s)

D. Chrysostomou (TU Delft - Intelligent Electrical Power Grids)

J. R. Rueda Torres (TU Delft - Intelligent Electrical Power Grids)

Jochen Lorenz Cremer (TU Delft - Intelligent Electrical Power Grids)

Research Group
Intelligent Electrical Power Grids
DOI related publication
https://doi.org/10.1016/j.softx.2025.102241
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Intelligent Electrical Power Grids
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository as part of the Taverne amendment. More information about this copyright law amendment can be found at https://www.openaccess.nl. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Volume number
31
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Power system operators need new, efficient operational tools to use the flexibility of distributed resources and deal with the challenges of highly uncertain and variable power systems. Transmission system operators can consider the available flexibility in distribution systems (DSs) without breaching the DS constraints through flexibility areas. However, there is an absence of open-source packages for flexibility area estimation. This paper introduces TensorConvolutionPlus, a user-friendly Python-based package for flexibility area estimation. The main features of TensorConvolutionPlus include estimating flexibility areas using the TensorConvolution+ algorithm, the power flow-based algorithm, an exhaustive PF-based algorithm, and an optimal power flow-based algorithm. Additional features include adapting flexibility area estimations from different operating conditions and including flexibility service providers offering discrete setpoints of flexibility. The TensorConvolutionPlus package facilitates a broader adaptation of flexibility estimation algorithms by system operators and power system researchers.

Files

warning

File under embargo until 29-12-2025