A Non-parametric Bayesian Network for multivariate probabilistic modelling of Weigh-in-Motion System Data

Journal Article (2022)
Author(s)

M.A. Mendoza Lugo (TU Delft - Hydraulic Structures and Flood Risk)

O. Morales Napoles (TU Delft - Hydraulic Structures and Flood Risk)

David-Joaquín Delgado-Hernández (Autonomous University of Mexico State, Toluca)

Research Group
Hydraulic Structures and Flood Risk
Copyright
© 2022 M.A. Mendoza Lugo, O. Morales Napoles, David Joaquín Delgado-Hernández
DOI related publication
https://doi.org/10.1016/j.trip.2022.100552
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 M.A. Mendoza Lugo, O. Morales Napoles, David Joaquín Delgado-Hernández
Research Group
Hydraulic Structures and Flood Risk
Volume number
13
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Weigh-in-motion (WIM) systems help to collect data such as vehicular loads, individual axle loads, vehicle type, and number of axles. This is relevant in engineering because traffic load performs an essential function in the design of new bridges and in the reliability assessment of existing ones, in traffic analysis and other areas of engineering. Therefore, when WIM data is not available, computing synthetic WIM observations that adequately approximate the statistical dependence between variables is important. In this paper, WIM measurements from the Netherlands and Brazil were analysed, and a set of non-parametric Bayesian Networks (NPBNs) is presented. This paper significantly improves on previous results by allowing observations of inter-axial distance to be generated, by allowing several sources of data to be used in the modelling and by making software available to researchers and practitioners interested for generating synthetic observations based on the distribution of vehicle type. In particular, statistical models to describe the weight and length of different vehicle types are derived. Three NPBNs were quantified using data from: (i) six WIM locations of the motorway network of the Netherlands, (ii) one WIM location in one city route of Rotterdam, The Netherlands, and (iii) one WIM location of one highway in Araranguá city located in the south of Brazil. Additionally, a Graphical User Interface (GUI) for the six Dutch WIM motorways locations was developed. To illustrate a possible use of the model when WIM data is not available. The GUI was used to compute synthetic WIM observations using data collected through traffic counters gathered in Toluca city in central Mexico, as input. This paper shows that the methodology here presented is widely applicable and depends only on the assessment of vehicle type configuration.