Enhanced superconductivity in atomically thin TaS 2
Efrén Navarro-Moratalla (Universidad de Valencia (ICMol))
J.O. Island (TU Delft - QN/van der Zant Lab)
Samuel Manãs-Valero (Universidad de Valencia (ICMol))
Elena Pinilla-Cienfuegos (Universidad de Valencia (ICMol))
A. Castellanos-Gomez (QN/Mol. Electronics & Devices)
Jorge Quereda (Universidad Autónoma de Madrid)
Gabino Rubio-Bollinger (Universidad Autónoma de Madrid)
Luca Chirolli (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))
Jose Angel Silva-Guillén (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))
Nicolás Agrait (Universidad Autónoma de Madrid, Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))
GA Steele (TU Delft - QN/Steele Lab)
Francisco Guinea (Instituto Madrilenõ de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia))
H. S.J. van der Zant (Kavli institute of nanoscience Delft, TU Delft - QN/van der Zant Lab)
Eugenio Coronado (Universidad de Valencia (ICMol))
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top-down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron-phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.