A 2D Ultrasound Phased-Array Transmitter ASIC for High-Frequency US Stimulation and Powering

More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 H. Rivandi, T.M. Lopes Marta da Costa
Research Group
Bio-Electronics
Issue number
4
Volume number
17
Pages (from-to)
701 - 712
DOI:
https://doi.org/10.1109/TBCAS.2023.3288891
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Ultrasound (US) neuromodulation and ultrasonic power transfer to implanted devices demand novel ultrasound transmitters capable of steering focused ultrasound waves in 3D with high spatial resolution and US pressure, while having a miniaturized form factor. Meeting these requirements needs a 2D array of ultrasound transducers directly integrated with a high-frequency 2D phased-array ASIC. However, this imposes severe challenges on the design of the ASIC. In order to avoid the generation of grating lobes, the elements in the 2D phased-array should have a pitch of half of the ultrasound wavelength, which, as frequency increases, highly reduces the area available for the design of high-voltage beamforming channels. This article addresses these challenges by presenting the system-level optimization and implementation of a high-frequency 2D phased-array ASIC. The system-level study focuses on the optimization of the US transmitter toward high-frequency operation while minimizing power consumption. This study resulted in the implementation of two ASICs in TSMC 180 nm BCD technology: firstly, an individual beamforming channel was designed to demonstrate the tradeoffs between frequency, driving voltage, and beamforming capabilities. Finally, a 12-MHz pitch matched 12 × 12 phased-array ASIC working at 20-V amplitude and 3-bit phasing was designed and experimentally validated, to demonstrate high-frequency phased-array operation. The measurement results verify the phasing functionality of the ASIC with a maximum DNL of 0.35 LSB. The CMOS chip consumes 130 mW and 26.6 mW average power during the continuous pulsing and delivering 200-pulse bursts with a PRF of 1 kHz, respectively.

Files

A_2D_Ultrasound_Phased_Array_T... (pdf)
(pdf | 19.6 Mb)
- Embargo expired in 01-01-2024
License info not available