Controlling Magnetism with Light in a Zero Orbital Angular Momentum Antiferromagnet

Journal Article (2023)
Author(s)

M. Matthiesen (University of Geneva, TU Delft - QN/Caviglia Lab)

Jorrit R. Hortensius (TU Delft - QN/Caviglia Lab, Kavli institute of nanoscience Delft)

S. Mañas Valero (Universidad de Valencia (ICMol))

Itzik Kapon (Université de Genève)

M. Siskins (TU Delft - Dynamics of Micro and Nano Systems, Kavli institute of nanoscience Delft)

B. A. Ivanov (Radboud Universiteit Nijmegen, Institute of Magnetism)

H.S.J. van der Zant (Kavli institute of nanoscience Delft, TU Delft - QN/van der Zant Lab)

Dmytro Afanasiev (Radboud Universiteit Nijmegen)

A. Caviglia (Université de Genève)

More Authors (External organisation)

Research Group
QN/Caviglia Lab
Copyright
© 2023 M. Matthiesen, J.R. Hortensius, S. Mañas Valero, Itzik Kapon, M. Siskins, Boris A. Ivanov, H.S.J. van der Zant, Dmytro Afanasiev, A. Caviglia, More Authors
DOI related publication
https://doi.org/10.1103/PhysRevLett.130.076702
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 M. Matthiesen, J.R. Hortensius, S. Mañas Valero, Itzik Kapon, M. Siskins, Boris A. Ivanov, H.S.J. van der Zant, Dmytro Afanasiev, A. Caviglia, More Authors
Research Group
QN/Caviglia Lab
Issue number
7
Volume number
130
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with orbital angular momentum, spin-orbit coupling enables spin dynamics through the resonant excitation of low-energy electric dipoles such as phonons and orbital resonances which interact with spins. However, in magnetic systems with zero orbital angular momentum, microscopic pathways for the resonant and low-energy optical excitation of coherent spin dynamics are lacking. Here, we consider experimentally the relative merits of electronic and vibrational excitations for the optical control of zero orbital angular momentum magnets, focusing on a limit case: the antiferromagnet manganese phosphorous trisulfide (MnPS3), constituted by orbital singlet Mn2+ ions. We study the correlation of spins with two types of excitations within its band gap: a bound electron orbital excitation from the singlet orbital ground state of Mn2+ into an orbital triplet state, which causes coherent spin precession, and a vibrational excitation of the crystal field that causes thermal spin disorder. Our findings cast orbital transitions as key targets for magnetic control in insulators constituted by magnetic centers of zero orbital angular momentum.

Files

PhysRevLett.130.076702.pdf
(pdf | 0.955 Mb)
License info not available