A Highly Linear Temperature Sensor Operating up to 600°C in a 4H-SiC CMOS Technology
J. Mo (TU Delft - Electronic Components, Technology and Materials)
Jinglin Li (TU Delft - Electronic Components, Technology and Materials)
Y. Zhang (TU Delft - Electronic Components, Technology and Materials)
J. Romijn (TU Delft - Microelectronics)
Alexander May (Fraunhofer Institute for Integrated Systems and Devices Technology IISB)
Tobias Erlbacher (Fraunhofer Institute for Integrated Systems and Devices Technology IISB)
Guogi Zhang (TU Delft - Electronic Components, Technology and Materials)
Sten Vollebregt (TU Delft - Electronic Components, Technology and Materials)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this work, a highly linear temperature sensor based on a silicon carbide (SiC) p-n diode is presented. Under a constant current biasing, the diode has an excellent linear response to the temperature (from room temperature to 600°C). The best linearity (coefficient of determination ${R}^{{2}}$ = 99.98%) is achieved when the current density is 0.53 mA/cm2. The maximum sensitivity of the p-n diode is 3.04 mV/°C. The temperature sensor is fully compatible with Fraunhofer Institute (FHG) IISB's open SiC CMOS (complementary metal-oxide-semiconductor) technology, thus enabling the monolithic integration with SiC readout circuits for high-temperature applications. The sensor also features a simple fabrication process. To our knowledge, the presented device is the first SiC diode temperature sensor that does not require a mesa etch or backside contacts.