Photovoltaic chimney
Thermal modeling and concept demonstration for integration in buildings
Juan Camilo Ortiz Lizcano (TU Delft - Photovoltaic Materials and Devices)
Z. Haghighi (TU Delft - Climate Design and Sustainability)
Sander Wapperom (Student TU Delft)
Carlos Infante Ferreira (TU Delft - Engineering Thermodynamics)
Olindo Isabella (TU Delft - Photovoltaic Materials and Devices)
Andy van den van den Dobbelsteen (TU Delft - Climate Design and Sustainability)
Miroslav Zeman (TU Delft - Electrical Sustainable Energy)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This work presents the concept of a photovoltaic (PV)-powered solar chimney. We modeled and experimentally studied the integration of a PV system within a naturally ventilated façade (NVF), attempting to use the inherent cavity as a ventilation channel to transfer heat. Thermodynamic models were created to study the thermal and, therefore, the electrical performance of a PV system installed at different positions within the cavity of the NVF. An experimental setup of the PV chimney was manufactured to validate the computational models. Results show low root mean square error (RMSE) values for the prediction of the mass flow and the temperature of the different materials considered in the chimney. A basic sensitivity analysis was performed to find the best position of the PV modules within the chimney for a three-story household in the Netherlands. Optimization showed that with a cavity depth of 0.2 m with PV modules located at the front layer, the electric annual yield is maximized. For the same cavity depth, placing the modules in the middle significantly increases heat flow production, albeit with a reduction on electrical performance.