M. Zeman
537 records found
1
...
The impedance of solar cells can be leveraged for a variety of innovative applications. However, for the continued advancement of such applications, it is crucial to understand how the impedance varies during practical operation. This work characterizes the impedance of modern cr
...
At standard test conditions (STC), the performance of photovoltaic modules is compared using efficiency. As irradiance and module temperature fluctuate over the year and STC efficiency does not assess the performance of the module accurately in real world conditions, the annual e
...
In this work, we optimize cerium-doped indium oxide – ICO – thin films with respect to sputtering parameters such as oxygen flow, deposition pressure, applied RF power. Optimized 35-nm-thick ICO layer demonstrated a mobility of 44.22 cm2/Vs, a carrier concentration of
...
A thorough understanding of the small-signal response of solar cells can reveal intrinsic device characteristics and pave the way for innovations. This study investigates the impedance of crystalline silicon PN junction devices using TCAD simulations, focusing on the impact of fr
...
Polycrystalline silicon (poly-Si) carrier-selective passivating contacts (CSPCs), featuring high photoconversion efficiency (PCE) and cost-effectiveness, have emerged as a promising approach for high-efficiency crystalline silicon (c-Si) solar cells. To minimize parasitic absorpt
...
This study presents a comprehensive analysis of the optical and electronic properties of thin films of molybdenum oxide and tungsten oxide to implement hole-selective contact for heterojunction solar cells. These contacts are currently viewed as an alternative for the fabrication
...
Photovoltaic modules are typically not optimized for conditions of partial shading. One proposed approach to improve their shade tolerance is to implement maximum power point tracking on different strings of cells within the modules. However, this approach increases the demand fo
...
Assessing the dual radiative consequences of urban PV integration
Albedo change and radiative forcing dynamics
Integrating photovoltaic (PV) systems in urban areas enhances local renewable electricity production but also reduces surface albedo due to the lower reflectivity of PV panels. This albedo reduction increases Earth's energy absorption, resulting in positive radiative forcing (RF)
...
PV multiscale modelling of perovskite / silicon two-terminal devices
From accurate cell performance simulation to energy yield prediction
Recent conversion efficiency breakthroughs in double-junction (tandem) perovskite/crystalline silicon solar cells demand advanced opto-thermo-electrical simulations, that are critical for translating laboratory results into realistic photovoltaic module and system performance. A
...
Lessons Learned from Four Real-Life Case Studies
Energy Balance Calculations for Implementing Positive Energy Districts
Positive Energy Districts (PEDs) are integral to achieving sustainable urban development by enhancing energy self-sufficiency and reducing carbon emissions. This paper explores energy balance calculations in four diverse case study districts within different climatic conditions—F
...
Clouds moving in front or away from the sun are the leading cause of irradiance variability. These variations have a repercussion on the electricity production of photovoltaic systems. Predicting such changes is essential for proper control of these systems and for maintaining gr
...
This work is a long-term, interannual, and experimental study conducted in multiple locations. It studies the effects of phase change materials (PCMs) on photovoltaic modules’ performance by reducing their operational temperature. Two PV modules were manufactured so that PCM slab
...
Solar photovoltaic (PV) energy is variable. The output power can change considerably in a matter of minutes, imposing challenges on the control of systems connected downstream. The power from these systems can be smoothed using electric storage, potentially increasing the system
...
Nowadays, an increasing share of photovoltaic (PV) systems makes use of module- or submodule-level power electronics (PE). Furthermore, PE is used in stand-alone devices powered by PV-storage solutions. One way to facilitate further implementation of PE in PV applications is to i
...
Reducing indium consumption in transparent conductive oxide (TCO) layers is crucial for mass production of silicon heterojunction (SHJ) solar cells. In this contribution, optical simulation-assisted design and optimization of SHJ solar cells featuring MoOx hole collect
...
This work presents a practical approach to designing an optical filter for thermal management for photovoltaic modules. The approach emphasizes the practicality of manufacturing over optical performance. Simulation work demonstrates that, for an interdigitated back contact solar
...
This paper presents dynamic air-based models of a hybrid photovoltaic-thermal (PVT) collector. The models are developed with the aim of estimating the temperature of the collector components and therefore of estimating the annual generation of electrical energy and thermal energy
...
Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the el
...
Herein, the application of a comprehensive modeling framework that can help optimize the design of multilayered optical filters for coloring photovoltaic (PV) modules is presented based on crystalline silicon solar cells. To overcome technical issues related to the implementation
...
The tandem PV technology can potentially increase the efficiency of PV modules over 30%. To design efficient modules, a quantification of the different losses is important. Herein, a model for quantifying the energy loss mechanisms in PV systems under real-world operating conditi
...