Circular Image

545 records found

The impedance of solar cells can be leveraged for a variety of innovative applications. However, for the continued advancement of such applications, it is crucial to understand how the impedance varies during practical operation. This work characterizes the impedance of modern cr ...
Photovoltaic modules are typically not optimized for conditions of partial shading. One proposed approach to improve their shade tolerance is to implement maximum power point tracking on different strings of cells within the modules. However, this approach increases the demand fo ...

Lessons Learned from Four Real-Life Case Studies

Energy Balance Calculations for Implementing Positive Energy Districts

Positive Energy Districts (PEDs) are integral to achieving sustainable urban development by enhancing energy self-sufficiency and reducing carbon emissions. This paper explores energy balance calculations in four diverse case study districts within different climatic conditions—F ...
A thorough understanding of the small-signal response of solar cells can reveal intrinsic device characteristics and pave the way for innovations. This study investigates the impedance of crystalline silicon PN junction devices using TCAD simulations, focusing on the impact of fr ...
In this work, we optimize cerium-doped indium oxide – ICO – thin films with respect to sputtering parameters such as oxygen flow, deposition pressure, applied RF power. Optimized 35-nm-thick ICO layer demonstrated a mobility of 44.22 cm2/Vs, a carrier concentration of ...
At standard test conditions (STC), the performance of photovoltaic modules is compared using efficiency. As irradiance and module temperature fluctuate over the year and STC efficiency does not assess the performance of the module accurately in real world conditions, the annual e ...
Polycrystalline silicon (poly-Si) carrier-selective passivating contacts (CSPCs), featuring high photoconversion efficiency (PCE) and cost-effectiveness, have emerged as a promising approach for high-efficiency crystalline silicon (c-Si) solar cells. To minimize parasitic absorpt ...
Nowadays, an increasing share of photovoltaic (PV) systems makes use of module- or submodule-level power electronics (PE). Furthermore, PE is used in stand-alone devices powered by PV-storage solutions. One way to facilitate further implementation of PE in PV applications is to i ...
This paper presents dynamic air-based models of a hybrid photovoltaic-thermal (PVT) collector. The models are developed with the aim of estimating the temperature of the collector components and therefore of estimating the annual generation of electrical energy and thermal energy ...
Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the el ...
This work is a long-term, interannual, and experimental study conducted in multiple locations. It studies the effects of phase change materials (PCMs) on photovoltaic modules’ performance by reducing their operational temperature. Two PV modules were manufactured so that PCM slab ...
Clouds moving in front or away from the sun are the leading cause of irradiance variability. These variations have a repercussion on the electricity production of photovoltaic systems. Predicting such changes is essential for proper control of these systems and for maintaining gr ...
Reducing indium consumption in transparent conductive oxide (TCO) layers is crucial for mass production of silicon heterojunction (SHJ) solar cells. In this contribution, optical simulation-assisted design and optimization of SHJ solar cells featuring MoOx hole collect ...
Solar photovoltaic (PV) energy is variable. The output power can change considerably in a matter of minutes, imposing challenges on the control of systems connected downstream. The power from these systems can be smoothed using electric storage, potentially increasing the system ...
This work presents a practical approach to designing an optical filter for thermal management for photovoltaic modules. The approach emphasizes the practicality of manufacturing over optical performance. Simulation work demonstrates that, for an interdigitated back contact solar ...
Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highl ...
The photovoltaic (PV) module energy rating standard series IEC 61853 does not cover bifacial PV modules. However, the market share of bifacial PV modules has dramatically increased in recent years and is projected to grow. This work demonstrates how Parts 3 and 4 of the IEC 61853 ...
Silicon heterojunction (SHJ) solar cells have achieved a record efficiency of 26.81% in a front/back-contacted (FBC) configuration. Moreover, thanks to their advantageous high VOC and good infrared response, SHJ solar cells can be further combined with wide bandgap per ...
In this study, the edge passivation effectiveness and long-term stability of Nafion polymer in n-type interdigitated back contact (IBC) solar cells are investigated. For new module technologies such as half-cut, triple-cut, or shingled modules, cutting of the cells introduces unp ...
The development of clean hydrogen and photovoltaic (PV) systems is lagging behind the goals set in the Net Zero Emissions scenario of the International Energy Agency. For this reason, efficient hydrogen production systems powered from renewable energy need to be deployed faster. ...