L. Mazzarella
info
Please Note
<p>This page displays the records of the person named above and is not linked to a unique person identifier. This record may need to be merged to a profile.</p>
47 records found
1
The degradation of perovskite solar cells due to reverse bias (RB) is one of the remaining challenges hindering the commercialization of the technology. To overcome this challenge, a thorough understanding of and control over the breakdown (BD) voltage are crucial. A prerequisite
...
The integration of self-assembled monolayers (SAMs) in perovskite (PVK) solar cells often presents processing challenges that can hinder their industrial uptake. To address these limitations and enhance the manufacturability of the SAMs/PVK interface, a co-deposition strategy was
...
Sequential thermal evaporation is an emerging technique for obtaining perovskite (PVK) photoactive materials for solar cell applications. Advantages include solvent-free processing, accurate stoichiometry control, and scalable processing. Nevertheless, the power conversion effici
...
Interdigitated-back-contacted silicon heterojunction (IBC-SHJ) solar cells with molybdenum oxide (MoOx) as a hole transport layer and a novel (n)-type hydrogenated nanocrystalline silicon (nc-Si:H)/MoOx electron transport stack use ultra-thin MoOx as a full-area blanket layer. Th
...
In realistic partial shading scenarios, the impact of low-intensity illumination needs to be considered. However, there is barely any research available and the published results are contradictory. Here, it is shown that the reverse bias behavior of perovskite solar cells under l
...
Polycrystalline silicon (poly-Si) carrier-selective passivating contacts (CSPCs), featuring high photoconversion efficiency (PCE) and cost-effectiveness, have emerged as a promising approach for high-efficiency crystalline silicon (c-Si) solar cells. To minimize parasitic absorpt
...
Throughout the development of silicon heterojunction (SHJ) solar cells, the transparent conductive oxide has been regarded as an essential component of their front electrode, facilitating lateral charge transport of photogenerated carriers toward the front metal grid fingers. In
...
The fabrication process of interdigitated-back-contacted silicon heterojunction (IBC-SHJ) solar cells has been significantly simplified with the development of the so-called tunnel-IBC architecture. This architecture utilizes a highly conductive (p)-type nanocrystalline silicon (
...
A Review
Application of Doped Hydrogenated Nanocrystalline Silicon Oxide in High Efficiency Solar Cell Devices
Due to the unique microstructure of hydrogenated nanocrystalline silicon oxide (nc-SiOx:H), the optoelectronic properties of this material can be tuned over a wide range, which makes it adaptable to different solar cell applications. In this work, the authors review th
...
Reducing indium consumption in transparent conductive oxide (TCO) layers is crucial for mass production of silicon heterojunction (SHJ) solar cells. In this contribution, optical simulation-assisted design and optimization of SHJ solar cells featuring MoOx hole collect
...
Two terminal (2T) perovskite/copper-indium-gallium-selenide (CIGS) tandem solar cells combine high conversion efficiency with lightweight flexible substrates which can decrease manufacturing and installation costs. In order to improve the power conversion efficiency of these tand
...
Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the el
...
Passivating contacts are crucial for realizing high-performance crystalline silicon solar cells. Herein, contact formation by plasma-enhanced chemical vapor deposition (PECVD) followed by an annealing step is focused on. Poly-SiOx passivating contacts by combining plas
...
Silicon heterojunction (SHJ) solar cells have achieved a record efficiency of 26.81% in a front/back-contacted (FBC) configuration. Moreover, thanks to their advantageous high VOC and good infrared response, SHJ solar cells can be further combined with wide bandgap per
...
Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highl
...
Nonequal current generation in the cells of a photovoltaic module, e.g., due to partial shading, leads to operation in reverse bias. This quickly causes a significant efficiency loss in perovskite solar cells. We report a more quantitative investigation of the reverse bias degrad
...
Multiple-source thermal evaporation is emerging as an excellent technique to obtain perovskite (PVK) materials for solar cell applications due to its solvent-free processing, accurate control of stoichiometric ratio, and potential for scalability. Nevertheless, the currently repo
...
Passivating contacts based on poly-Si have enabled record-high c-Si solar cell efficiencies due to their excellent surface passivation quality and carrier selectivity. The eventual existence of pinholes within the ultra-thin SiOx layer is one of the key factors for carrier collec
...
The preferential orientation of the perovskite (PVK) is typically accomplished by manipulation of the mixed cation/halide composition of the solution used for wet processing. However, for PVKs grown by thermal evaporation, this has been rarely addressed. It is unclear how variati
...
Single junction crystalline silicon (c-Si) solar cells are reaching their practical efficiency limit whereas perovskite/c-Si tandem solar cells have achieved efficiencies above the theoretical limit of single junction c-Si solar cells. Next to low-thermal budget silicon heterojun
...