Will SiOx-pinholes for SiOx/poly-Si passivating contact enhance the passivation quality?

Journal Article (2023)
Author(s)

Guangtao Yang (TU Delft - Photovoltaic Materials and Devices)

Remon Gram (Student TU Delft)

P.A. Procel Moya (TU Delft - Photovoltaic Materials and Devices)

C. Han (TU Delft - Photovoltaic Materials and Devices)

Z. Yao (TU Delft - Photovoltaic Materials and Devices)

M. Singh (TU Delft - Photovoltaic Materials and Devices)

Y. Zhao (TU Delft - Photovoltaic Materials and Devices)

L. Mazzarella (TU Delft - Photovoltaic Materials and Devices)

M. Zeman (TU Delft - Electrical Sustainable Energy)

O. Isabella (TU Delft - Photovoltaic Materials and Devices)

Research Group
Photovoltaic Materials and Devices
Copyright
© 2023 G. Yang, Remon Gram, P.A. Procel Moya, C. Han, Z. Yao, M. Singh, Y. Zhao, L. Mazzarella, M. Zeman, O. Isabella
DOI related publication
https://doi.org/10.1016/j.solmat.2023.112200
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 G. Yang, Remon Gram, P.A. Procel Moya, C. Han, Z. Yao, M. Singh, Y. Zhao, L. Mazzarella, M. Zeman, O. Isabella
Research Group
Photovoltaic Materials and Devices
Volume number
252
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Passivating contacts based on poly-Si have enabled record-high c-Si solar cell efficiencies due to their excellent surface passivation quality and carrier selectivity. The eventual existence of pinholes within the ultra-thin SiOx layer is one of the key factors for carrier collection, beside the tunneling mechanism. However, pinholes are usually believed to have negative impact on the passivation quality of poly-Si passivating contacts. This work studied the influence of the pinhole density on the passivation quality of ion-implanted poly-Si passivating contacts by decoupling the pinhole generation from the dopants diffusion process by means of two annealing steps: (1) a pre-annealing step at high temperature after the intrinsic poly-Si deposition to visualize the formation of pinholes and (2) a post-annealing step for dopants activation/diffusion after ion-implantation. The pinhole density is quantified in the range of 1✕106 to 3✕108 cm2 by the TMAH selective etching approach. The passivation quality is discussed with respect to the pinhole density and the post-annealing thermal budget (TB) for dopants diffusion. The study shows that a moderate pinhole density does not induce doping profile variations that can be detectable by the coarse spatial resolution of ECV measurements. It is surprising that the existence of pinholes in a moderate density within our thickness fixed SiOx layer can effectively enhance the passivation qualities for both n+ and p+ poly-Si passivating contacts. We speculate the reason is due to the enhanced field-effect passivation at the pinhole surrounding. In fact, the variation of the passivation quality depends on the balance between a strengthened field-effect passivation and an excessive local Auger recombination, being both effects induced by the higher and deeper level of dopants diffused into the c-Si surface through the pinholes.