Carrier-based Generalized Discontinuous PWM Strategy for Single-Phase Three-Legs Active Power Decoupling Converters
J. Xu (Shanghai Jiao Tong University, Ministry of Education)
Thiago Batista Soeiro (TU Delft - DC systems, Energy conversion & Storage)
Fei Gao (Ministry of Education, Shanghai Jiao Tong University)
Houjun Tang (Ministry of Education, Shanghai Jiao Tong University)
Pavol Bauer (TU Delft - DC systems, Energy conversion & Storage)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Three-legs active power decoupling (APD) converters are widely studied in the single-phase grid-connected systems to enhance the circuit lifetime by creating an alternative path for the typical existing dc-side power pulsating ripple. Therefore, this reduces the requirement of smoothing dc capacitors allowing compact designs even with the implementation of long life metalized film technology. In this article, to allow enhancement of the system power density by improving power conversion efficiency and thus reducing the requirement of thermal management of the semiconductors, a carrier-based generalized discontinuous PWM strategy is proposed. This method detects the converter ac currents and ac reference voltages to determine the optimum clamped duration in each one of the three bridge-legs, which will minimize the converter overall switching losses. The proposed modulation method is analyzed and validated on a PLECS simulation and a 2 kVA single-phase three-legs APD converter.