Reclamation of Tidal Flats Within Tidal Basins Alters Centennial Morphodynamic Adaptation to Sea-Level Rise

Journal Article (2022)
Authors

Leicheng Guo (Shanghai Estuarine and Coastal Science Research Center)

C. Zhu (TU Delft - Coastal Engineering, Shanghai Estuarine and Coastal Science Research Center)

Fan Xu (Shanghai Estuarine and Coastal Science Research Center)

Weiming Xie (Shanghai Estuarine and Coastal Science Research Center)

M. Van Der Wegen (Deltares, IHE Delft Institute for Water Education)

Ian Townend (University of Southampton)

Z.B. Wang (TU Delft - Coastal Engineering, Deltares)

Qing He (Shanghai Estuarine and Coastal Science Research Center)

Research Group
Coastal Engineering
Copyright
© 2022 Leicheng Guo, C. Zhu, Fan Xu, Weiming Xie, Mick van der Wegen, Ian Townend, Zhengbing Wang, Qing He
To reference this document use:
https://doi.org/10.1029/2021JF006556
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Leicheng Guo, C. Zhu, Fan Xu, Weiming Xie, Mick van der Wegen, Ian Townend, Zhengbing Wang, Qing He
Research Group
Coastal Engineering
Issue number
6
Volume number
127
DOI:
https://doi.org/10.1029/2021JF006556
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Reclamation of low-lying tidal flats and floodplains adjacent to present shorelines has been implemented worldwide for both coastal defense and development. While it is technically feasible to monitor the short-term impact of tidal flat embankments, it is challenging to identify long-term and cumulative morphodynamic impact, particularly considering centennial sea-level rise (SLR). In this study, we construct a process-based hydro-morphodynamic model for a schematized tidal basin and examine its morphodynamic evolution under the combined influence of SLR and tidal flat embankments. We see that rising sea levels lead to inundation of low-lying floodplains just above high water, creating new intertidal flats that mitigate the drowning impact of SLR. This mitigation effect is lost if the low-lying floodplains and tidal flats are reclaimed, preventing any shoreline migration under SLR. Removing a large portion of intertidal flats within the tidal basin induces significant changes in basin hypsometry and potentially, a reversal of flood/ebb dominance. The resulting hydro-morphodynamic impact of large-scale tidal flat embankment is more significant than SLR at a centennial time scale. This suggests a need for much greater management awareness regarding the cumulative impact of human activities. These findings imply that allowing lateral shoreline migration under SLR sustains tidal basin's inherent morphodynamic buffering capacity, whereas reclaiming tidal flats significantly alters hydro-morphodynamic adaptation at the decadal to centennial time scales. It highlights the importance of conserving low-lying floodplains and tidal flats in tide-dominated systems to counteract the drowning impact of SLR.

Files

JGR_Earth_Surface_2022_Guo_Rec... (pdf)
(pdf | 11.3 Mb)
- Embargo expired in 17-12-2022
License info not available