LG
Leicheng Guo
30 records found
1
Decomposing turbulence from waves remains challenging due to frequency overlap and wave-turbulence interactions. Existing decomposition methods, e.g., moving average, energy spectrum analysis, and synchrosqueezed wavelet transform (SWT), produce inconsistent turbulence estimates.
...
Channel deepening and narrowing are common anthropogenic modifications in estuaries, but their combined effects on estuarine circulation, stratification, and sediment transport remain insufficiently understood. This study investigates these combined impacts in the North Passage o
...
Human interventions influence sediment dynamics, and understanding these mechanisms is essential for predicting short-term and long-term estuarine development. The Deep Channel Navigation Project (DCNP) in the Yangtze Estuary is such a large infrastructural intervention that subs
...
De-reclamation is a common strategy used for the restoration of tidal flats. In this study, we investigate the morphodynamic response of tidal channel networks and tidal flats after de-reclamation initiatives using the Delft3D numerical model. We find that tidal channel networks
...
A decline of the fluvial sediment supply leads to coastal erosion and land loss. However, the fluvial sediment load may influence not only coastal morphodynamics but also estuarine hydrodynamics and associated saltwater intrusion. Previous studies revealed that suspended sediment
...
Correction
Modulation of sediment load recovery downstream of Three Gorges Dam in the Yangtze River (Anthropocene Coasts, (2023), 6, 1, (2), 10.1007/s44218-022-00015-1)
Following publication of the original article (Zhu et al. 2023), the authors reported that Fig. 1 needed to be updated. The correct Fig. 1 has been provided in this Correction. The original article (Zhu et al. 2023) has been corrected.
Coastal tidal flats provide valuable ecosystems, but are highly sensitive to tidal dynamics, sea-level rise, and human activities. Tidal inundation depth and frequency are known to affect tidal flat morphodynamics. However, the causes, processes and extent remain uncertain, parti
...
The sediment load in the Yangtze River downstream of the Three Gorges Dam (TGD) has substantially declined in recent decades. The decrease is more profound below the TGD, e.g., a 97% decrease at Yichang, compared with that at the delta apex, 1200 km downstream, e.g., a 75% decrea
...
River discharge is known to enhance tidal damping and tidal wave deformation in estuaries. While the damping effect on astronomical tides has been well documented, river impact on tidal wave deformation and associated overtide generation (shallow water harmonics of one or more as
...
The mechanisms controlling the formation of an estuarine turbidity maximum (ETM) in estuaries have been extensively investigated, but one aspect that has received much less scientific attention is the role of high suspended sediment concentrations in combination with tidal asymme
...
Reclamation of low-lying tidal flats and floodplains adjacent to present shorelines has been implemented worldwide for both coastal defense and development. While it is technically feasible to monitor the short-term impact of tidal flat embankments, it is challenging to identify
...
Regime shifts in the Changjiang (Yangtze River) Estuary
The role of concentrated benthic suspensions
Channel deepening often triggers positive feedback between tidal deformation, sediment import and drag reduction, which leads to the regime shift in estuaries from low-turbid to hyper-turbid state. In this study, a transition in profiles of suspended sediment concentration (SSC)
...
Estuarine tidal dynamics are influenced by changes in morphology and friction. In this work, we quantified changes in tidal damping in the Yangtze Estuary and explored the impact of morphology and friction using a numerical model. In-depth analyses of tidal data reveal a strong r
...
Morphodynamic adaptation of a tidal basin to centennial sea-level rise
The importance of lateral expansion
Global climate changes have accelerated sea-level rise (SLR), which exacerbates the risks of coastal flooding and erosion. It is of practical interest to understand the long-term hydro-morphodynamic adaptation of coastal systems to SLR at a century time scale. In this work we use
...
Changjiang Delta in the Anthropocene
Multi-scale hydro-morphodynamics and management challenges
The Changjiang Delta (CD) is one of well-studied large deltas of critical socio-economical and ecological importance regionally and global representativeness. Cumulated field data and numerical modeling has facilitated scientific understanding of its hydro-morphodynamics at multi
...
An estuarine turbidity maximum (ETM) is a region of elevated suspended sediment concentration (SSC) resulting from residual transport mechanisms driven by river flow, tides, and salinity-induced density gradients (SalDG). However, in energetic and highly turbid environments such
...
Net sediment transport is predominantly seaward in fluvial-dominated estuaries worldwide. However, a distributary branch in the Changjiang Estuary, the North Branch, undergoes net landward sediment transport, which leads to severe channel aggradation. Its controlling mechanism an
...
Accurate measurement of suspended sediment concentration (SSC) in highly turbid environments has been a problem due to optical or acoustic signal saturation and attenuation. The saturation returns a limited measurement range, and the attenuation raises an ambiguity problem that a
...
Tidal waves traveling into estuaries are modified by channel geometry and river flow. The damping effect of river flow on incident astronomical tides is well documented, whereas its impact on low‐frequency tides like MSf and Mm is poorly understood. In this contribution, we emplo
...
Tidal wave deformation and tidal asymmetry widely occur in tidal estuaries and lagoons. Tidal asymmetry has been intensively studied because of its controlling role on residual sediment transport and large‐scale morphological evolution. There are several methods available to char
...