Decoupling Control of Multiactive Bridge Converters Using Linear Active Disturbance Rejection
S. Bandyopadhyay (TU Delft - DC systems, Energy conversion & Storage)
Zian Qin (TU Delft - DC systems, Energy conversion & Storage)
Pavol Bauera (TU Delft - DC systems, Energy conversion & Storage)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Multiactive bridge (MAB) converter is a promising solution for integrating multiple renewable sources, storage, and loads for various applications. However, the MAB converter is challenging to control due to the inherent coupling between the port power flows. To that end, this article presents a decoupling control strategy based on linear active disturbance rejection control. The proposed controller observes the coupling disturbance using a linear extended state observer and subsequently rejects the observed disturbance resulting in dynamic decoupling. Experiments conducted on a 2-kW 100-kHz Si-C-based four-port MAB converter laboratory prototype illustrate the decoupling performance of the proposed control strategy. Compared to the traditional decoupling control strategy, the proposed approach is decentralized and model independent, only requiring information regarding its order.